Across all sensory modalities, first-stage sensory neurons are an information bottleneck: they must convey all information available for an animal to perceive and act in its environment. Our understanding of coding properties of primary sensory neurons in the auditory and visual systems has been aided by the use of increasingly complex, naturalistic stimulus sets. By comparison, encoding properties of primary somatosensory afferents are poorly understood. Here, we use the rodent whisker system to examine how tactile information is represented in primary sensory neurons of the trigeminal ganglion (Vg). Vg neurons have long been thought to segregate into functional classes associated with separate streams of information processing. However, this view is based on Vg responses to restricted stimulus sets which potentially underreport the coding capabilities of these neurons. In contrast, the current study records Vg responses to complex three-dimensional (3D) stimulation while quantifying the complete 3D whisker shape and mechanics, thereby beginning to reveal their full representational capabilities. The results show that individual Vg neurons simultaneously represent multiple mechanical features of a stimulus, do not preferentially encode principal components of the stimuli, and represent continuous and tiled variations of all available mechanical information. These results directly contrast with proposed codes in which subpopulations of Vg neurons encode select stimulus features. Instead, individual Vg neurons likely overcome the information bottleneck by encoding large regions of a complex sensory space. This proposed tiled and multidimensional representation at the Vg directly constrains the computations performed by more central neurons of the vibrissotrigeminal pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8364131 | PMC |
http://dx.doi.org/10.1073/pnas.2020194118 | DOI Listing |
PLoS One
January 2025
UCL Institute of Ophthalmology, University College London, London, United Kingdom.
The outer retina (OR) is highly energy demanding. Impaired energy metabolism combined with high demands are expected to cause energy insufficiencies that make the OR susceptible to complex blinding diseases such as age-related macular degeneration (AMD). Here, anatomical, physiological and quantitative molecular data were used to calculate the ATP expenditure of the main energy-consuming processes in three cell types of the OR for the night and two different periods during the day.
View Article and Find Full Text PDFVet Dermatol
January 2025
Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.
Background: Itch is a common clinical sign in skin disorders. While the neural pathways of itch transmission from the skin to the brain are well understood in rodents, the same pathways in dogs remain unclear. The knowledge gap hinders the development of effective treatments for canine itch-related disorders.
View Article and Find Full Text PDFSensory neurons must be reproducibly specified to permit accurate neural representation of external signals but also able to change during evolution. We studied this paradox in the olfactory system by establishing a single-cell transcriptomic atlas of all developing antennal sensory lineages, including latent neural populations that normally undergo programmed cell death (PCD). This atlas reveals that transcriptional control is robust, but imperfect, in defining selective sensory receptor expression.
View Article and Find Full Text PDFRecording and manipulating neuronal ensembles that underlie cognition and behavior is challenging. FLARE is a light- and calcium-gated transcriptional reporting system for labeling activated neurons on the order of minutes. However, FLARE is limited by its sensitivity to prolonged neuronal activities.
View Article and Find Full Text PDFUnlabelled: Delay period activity in the dorso-lateral prefrontal cortex (dlPFC) has been linked to the maintenance and control of sensory information in working memory. The stability of working memory related signals found in such delay period activity is believed to support robust memory-guided behavior during sensory perturbations, such as distractors. Here, we directly probed dlPFC's delay period activity with a diverse set of activity perturbations, and measured their consequences on neural activity and behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!