Background: Perivascular spaces (PVS) have an important role in the elimination of metabolic waste from the brain. It has been hypothesized that the enlargement of PVS (ePVS) could be affected by pathophysiological mechanisms involved in Alzheimer's disease (AD), such as abnormal levels of CSF biomarkers. However, the relationship between ePVS and these pathophysiological mechanisms remains unknown.

Objective: We aimed to investigate the association between ePVS and CSF biomarkers of several pathophysiological mechanisms for AD. We hypothesized that ePVS will be associated to CSF biomarkers early in the AD continuum (i.e., amyloid positive cognitively unimpaired individuals). Besides, we explored associations between ePVS and demographic and cardiovascular risk factors.

Methods: The study included 322 middle-aged cognitively unimpaired participants from the ALFA + study, many within the Alzheimer's continuum. NeuroToolKit and Elecsys® immunoassays were used to measure CSF Aβ42, Aβ40, p-tau and t-tau, NfL, neurogranin, TREM2, YKL40, GFAP, IL6, S100, and α-synuclein. PVS in the basal ganglia (BG) and centrum semiovale (CS) were assessed based on a validated 4-point visual rating scale. Odds ratios were calculated for associations of cardiovascular and AD risk factors with ePVS using logistic and multinomial models adjusted for relevant confounders. Models were stratified by Aβ status (positivity defined as Aβ42/40 < 0.071).

Results: The degree of PVS significantly increased with age in both, BG and CS regions independently of cardiovascular risk factors. Higher levels of p-tau, t-tau, and neurogranin were significantly associated with ePVS in the CS of Aβ positive individuals, after accounting for relevant confounders. No associations were detected in the BG neither in Aβ negative participants.

Conclusions: Our results support that ePVS in the CS are specifically associated with tau pathophysiology, neurodegeneration, and synaptic dysfunction in asymptomatic stages of the Alzheimer's continuum.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340485PMC
http://dx.doi.org/10.1186/s13195-021-00878-5DOI Listing

Publication Analysis

Top Keywords

pathophysiological mechanisms
12
csf biomarkers
12
perivascular spaces
8
alzheimer's continuum
8
epvs pathophysiological
8
cognitively unimpaired
8
cardiovascular risk
8
epvs
6
spaces associated
4
associated tau
4

Similar Publications

Peripheral inflammatory markers (PIMs), such as C-reactive protein (CRP) or white blood cell count (WBC), have been associated with depression severity in meta-analyses and large cohort studies. However, in typically-sized psychoimmunology studies (N < 200) that explore associations between PIMs and neurobiological/psychosocial constructs related to depression and studies that examine less-studied PIMs (e.g.

View Article and Find Full Text PDF

Revealing microRNA regulation in single cells.

Trends Genet

January 2025

Institute for Computational Genomic Medicine, Goethe University Frankfurt, Frankfurt, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, Germany. Electronic address:

MicroRNAs (miRNAs) are key regulators of gene expression and control cellular functions in physiological and pathophysiological states. miRNAs play important roles in disease, stress, and development, and are now being investigated for therapeutic approaches. Alternative processing of miRNAs during biogenesis results in the generation of miRNA isoforms (isomiRs) which further diversify miRNA gene regulation.

View Article and Find Full Text PDF

Hyperactivity and Pro-inflammatory Functions of Platelets in Diabetes.

Front Biosci (Landmark Ed)

January 2025

Biomedical Institute for Multimorbidity (BIM), Hull York Medical School (HYMS), University of Hull, HU6 7RX Hull, UK.

Cardiovascular complications claim the lives of up to 70% of patients with diabetes mellitus (DM). The mechanisms increasing cardiovascular risk in DM remain to be fully understood and successfully addressed. Nonetheless, there is increasing evidence in the scientific literature of the participation of platelets in the cardiovascular complications of DM.

View Article and Find Full Text PDF

Evolution of Alzheimer's Disease Therapeutics: From Conventional Drugs to Medicinal Plants, Immunotherapy, Microbiotherapy and Nanotherapy.

Pharmaceutics

January 2025

Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico.

Alzheimer's disease (AD) represents an escalating global health crisis, constituting the leading cause of dementia among the elderly and profoundly impairing their quality of life. Current FDA-approved drugs, such as rivastigmine, donepezil, galantamine, and memantine, offer only modest symptomatic relief and are frequently associated with significant adverse effects. Faced with this challenge and in line with advances in the understanding of the pathophysiology of this neurodegenerative condition, various innovative therapeutic strategies have been explored.

View Article and Find Full Text PDF

Sarcopenia, an age-related decline in skeletal muscle mass, strength, and function, is increasingly recognized as a significant condition in the aging population, particularly among those with cardiovascular diseases (CVD). This review provides a comprehensive synthesis of the interplay between sarcopenia and cardiogeriatrics, emphasizing shared mechanisms such as chronic low-grade inflammation (inflammaging), hormonal dysregulation, oxidative stress, and physical inactivity. Despite advancements in diagnostic frameworks, such as the EWGSOP2 and AWGS definitions, variability in criteria and assessment methods continues to challenge standardization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!