Ruthenium(II) polypyridyl complexes (Ru) show high anti-tumor activity, but their poor solubility and low biocompatibility impede their use in anti-tumor therapy. Here,we circumvented the problem of low solubility by encapsulating the Ru in thermosensitive liposomes (LTSLs) and used gold nanorods (Au NRs) modified on the surface of the liposomes to permit the precise release of Ru at the tumor site. A facile and simple method was developed to synthesize Ru-loaded Au NR-decorated LTSL (Au@LTSL-Ru NPs). The loaded Au NRs improved the anti-tumor effect of Ru and enhanced the photothermal therapeutic properties of the nanosystem. A characterization experiment indicated that the average particle size of Au@LTSL-Ru was approximately 300 nm and that the Au NRs were successfully modified on the surface of LTSL. In theanti-tumor test, Au@LTSL-Ru and NIR significantly inhibited the proliferation of SGC-7901 cells. The ICvalue of Au@LTSL-Ru + NIR was 7.1 ± 1.2M (13g ml), and the inhibition rate was greater than 90% when the concentration reached 30g ml.studies revealed that Au@LTSL-Ru and NIR had a significant inhibitory effect on subcutaneous tumor tissues derived from SGC-7901 cells. Analysis of histopathology and immunocytotoxicity indicated that Au@LTSL-Ru has fewer side effects and high biocompatibility. Our results confirm that Au@LTSL-Ru can effectively inhibit tumor growth and aid the development of Ru for use in the thermal response in anti-tumor activity research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ac1afc | DOI Listing |
Discov Oncol
January 2025
Division of Hematology/Oncology, The University of Texas Health Sciences Center at Houston, McGovern Medical School, 6431 Fannin Street, MSB 5.216, Houston, TX, 77030, USA.
The established protocol for the management of acute myeloid leukemia (AML) has traditionally involved the administration of induction chemotherapy, followed by consolidation chemotherapy, and subsequent allogeneic stem cell transplantation for eligible patients. However, the prognosis for individuals with relapsed and refractory AML remains unfavorable. In response to the necessity for more efficacious therapeutic modalities, targeted immunotherapy has emerged as a promising advancement in AML treatment.
View Article and Find Full Text PDFCancer Biol Ther
December 2025
Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.
View Article and Find Full Text PDFMol Ther
January 2025
Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China, 200241. Electronic address:
CAR T-cell therapy has achieved remarkable clinical success in treating hematological malignancies. However, its clinical efficacy in solid tumors is less satisfactory, partially due to poor in vivo expansion and limited persistence of CAR-T cells. Here, we demonstrated that the overexpression of glucocorticoid-induced tumor necrosis factor receptor-related protein ligand (GITRL) enhances the anti-tumor activity of CAR-T cells.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain. Electronic address:
9-kDa Granulysin is a protein present in the granules of human activated cytotoxic T lymphocytes and natural killer cells. It has been shown to exert cytolytic activity against a wide variety of microbes: bacteria, fungi, yeast and protozoa. Recombinant isolated granulysin is also capable of inducing tumor cell death, so it could be used as an anti-tumor therapy.
View Article and Find Full Text PDFJ Control Release
January 2025
Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China. Electronic address:
Immune cells are sensitive to the perception of mechanical stimuli in the tumor microenvironment. Changes in biophysical cues within tumor tissue can alter the force-sensing mechanisms experienced by cells. Mechanical stimuli within the extracellular matrix are transformed into biochemical signals through mechanotransduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!