Electrical impedance tomography: A compass for the safe route to optimal PEEP.

Respir Med

Department of Medicine (DIMED), University of Padua, Italy; Institute of Anesthesia and Intensive Care, Padua University Hospital, Italy. Electronic address:

Published: October 2021

Setting the proper level of positive end-expiratory pressure (PEEP) is a cornerstone of lung protective ventilation. PEEP keeps the alveoli open at the end of expiration, thus reducing atelectrauma and shunt. However, excessive PEEP may contribute to alveolar overdistension. Electrical impedance tomography (EIT) is a non-invasive bedside tool that monitors in real-time ventilation distribution. Aim of this narrative review is summarizing the techniques for EIT-guided PEEP titration, while providing useful insights to enhance comprehension on advantages and limits of EIT for current and future users. EIT detects thoracic impedance to alternating electrical currents between pairs of electrodes and, through the analysis of its temporal and spatial variation, reconstructs a two-dimensional slice image of the lung depicting regional variation of ventilation and perfusion. Several EIT-based methods have been proposed for PEEP titration. The first described technique estimates the variations of regional lung compliance during a decremental PEEP trial, after lung recruitment. The optimal PEEP value is represented by the best compromise between lung collapse and overdistension. Later on, a second technique assessing alveolar recruitment by variation of the end-expiratory lung impedance was validated. Finally, the global inhomogeneity index and the regional ventilation delay, two EIT-derived parameters, showed promising results selecting the optimal PEEP value as the one that presents the lowest global inhomogeneity index or the lowest regional ventilation delay. In conclusion EIT represents a promising technique to individualize PEEP in mechanically ventilated patients. Whether EIT is the best technique for this purpose and the overall influence of personalizing PEEP on clinical outcome remains to be determined.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rmed.2021.106555DOI Listing

Publication Analysis

Top Keywords

optimal peep
12
peep
11
electrical impedance
8
impedance tomography
8
peep titration
8
global inhomogeneity
8
regional ventilation
8
ventilation delay
8
lung
6
ventilation
5

Similar Publications

An optimal protective ventilation strategy in lung resection surgery: a prospective, single-center, three-arm randomized controlled trial.

Updates Surg

January 2025

Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.

Protective ventilation reduces ventilator-induced acute lung injury postoperatively; however, the optimal strategy for one-lung ventilation (OLV) remains unclear. This study compared three protective ventilation strategies with a postoperative partial pressure of oxygen (PaO)/fraction of inspired oxygen (FiO) ratio to reduce the incidence of immediate postoperative pulmonary complications (PPCs) in patients undergoing lung resection surgery. Eighty-seven patients with ASA physical status I-III requiring OLV for lung resection surgery were randomized into three groups according to the applied ventilation strategies: low tidal volume (V) of 4 mL/kg of predicted body weight (PBW) (LV group), medium V of 6 mL/kg of PBW (MV group), and high V of 8 mL/kg of PBW (HV group).

View Article and Find Full Text PDF

The Valsalva manoeuvre is widely recognised for its effectiveness in reverting supra-ventricular tachycardia (SVT) in patients with good coordination. However, this is not applicable in sedated ventilated patients and there is a dearth of literature regarding the application of Valsalva in unconscious patients on mechanical ventilation. The authors, for the first time, present a novel non-pharmacological method to treat SVT in critically ill patients on mechanical ventilation, employing the high positive end-expiratory pressure (PEEP) technique.

View Article and Find Full Text PDF

Background: Despite the physiological advantages of positive end-expiratory pressure (PEEP), its optimal utilization during one-lung ventilation (OLV) remains uncertain. We aimed to investigate whether individualized PEEP titration by lung compliance is associated with a reduced risk of postoperative pulmonary complications during OLV.

Methods: We searched PubMed, Embase, and the Cochrane Central Register of Controlled Trials until April 1, 2024, to identify published randomized controlled trials that compared individualized PEEP titration by lung compliance with fixed PEEP during OLV.

View Article and Find Full Text PDF

The administration of surfactant aerosol therapy to preterm infants receiving continuous positive airway pressure (CPAP) respiratory support is highly challenging due to small flow passages, relatively high ventilation flow rates, rapid breathing and small inhalation volumes. To overcome these challenges, the objective of this study was to implement a validated computational fluid dynamics (CFD) model and develop an overlay nasal prong interface design for use with CPAP respiratory support that enables high efficiency powder aerosol delivery to the lungs of preterm infants when needed (i.e.

View Article and Find Full Text PDF

: Attaining adequate oxygenation in critically ill patients undergoing invasive ventilation necessitates intense monitoring through pulse oximetry (SpO) and frequent manual adjustments of ventilator settings like the fraction of inspired oxygen (FiO) and the level of positive end-expiratory pressure (PEEP). Our aim was to compare the quality of oxygenation with the use of automated ventilation provided by INTELLiVENT-Adaptive Support Ventilation (ASV) vs. ventilation that is not automated, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!