A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Silane-treated BaTiO ceramic powders for multilayer ceramic capacitor with enhanced dielectric properties. | LitMetric

Silane-treated BaTiO ceramic powders for multilayer ceramic capacitor with enhanced dielectric properties.

Chemosphere

Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea. Electronic address:

Published: January 2022

Silane/ceramic combination provides the composites with several advantages from the advancements of new ceramic composite materials with good thermal conductivity, high mechanical and dielectric properties have wide significant applications in electrical and electronic industries. In this study, to enhance the dispersibility of dielectric barium titanate (BaTiO) ceramic powder and additives for the fabrication of multilayer ceramic capacitors (MLCCs), surface treatment of the precursor of ceramic powder was performed using silane coupling agents. Dielectric ceramic sheets fabricated from ceramic powders that had been surface-treated with different amounts of N-[3-(trimethoxysilyl)propyl]aniline (TMSPA) which increased the surface gloss. In particular, the dielectric properties of the multilayer ceramic sheet fabricated by stacking sheets from the TMSPA-treated ceramic powder sintering at 1200 °C, it was confirmed that the dielectric constant increased from 881 to 2382 and the dielectric loss dropped from 1.96 to 1.34% with utilization of the TMSPA treatment. The physical and dielectric properties of the TMSPA-treated multilayer ceramic sheet were also determined by Fourier-transform infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, glossmetry, and electrochemical impedance analysis. The results revealed that the TMSPA-modified BaTiO surfaces considerably increased the dielectric property of the fabricated nanocomposite.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.131734DOI Listing

Publication Analysis

Top Keywords

multilayer ceramic
16
dielectric properties
16
ceramic powder
12
ceramic
11
dielectric
9
batio ceramic
8
ceramic powders
8
ceramic sheet
8
silane-treated batio
4
multilayer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!