Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Traumatic aortic injury (TAI) is one of the leading causes of fatalities in blunt impact. However, there is no consensus on the injury mechanism of TAI in traffic accidents, mainly due to the complexity of occurrence scenarios and limited real-world crash data relevant to TAI. In this study, a computational model of the aorta with nonlinear mechanical characteristics and accurate morphology was developed and integrated within a thorax finite element model that included all major anatomical structures. To maximize the model's capability for predicting TAI, a multi-level process was presented to validate the model comprehensively. At the component level, the in vitro aortic pressurization testing was simulated to mimic the aortic burst pressure. Then, a sled test of a truncated cadaver was modeled to evaluate aorta response under posterior acceleration. The frontal chest pendulum impact was utilized to validate the performance of the aorta within full body model under direct chest compression. A parametric study was implemented to determine an injury tolerance for the aorta under these different loading conditions. The simulated peak pressure before aortic rupture was within the range of the experimental burst pressure. For the sled test, the simulated chest deflection and cross-sectional pressure of the aorta were correlated with the experimental measurement. No aorta injury was observed in simulated results of both sled test and chest pendulum impact, which matched the experimental findings. The present model will be a useful tool for understanding the TAI mechanisms, evaluating injury tolerance, and developing prevention strategies for aortic injuries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2021.104700 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!