Sodium hydrosulfide has no additive effects on nitrite-inhibited renal gluconeogenesis in type 2 diabetic rats.

Life Sci

Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address:

Published: October 2021

Objective: Increased renal and hepatic gluconeogenesis are important sources of fasting hyperglycemia in type 2 diabetes (T2D). The inhibitory effect of co-administration of sodium nitrite and sodium hydrosulfide (NaSH) on hepatic but not renal gluconeogenesis has been reported in rats with T2D. The present study aimed to determine the effects of co-administration of sodium nitrite and NaSH on the expression of genes involved in renal gluconeogenesis in rats with T2D.

Methods: T2D was induced by a combination of a high-fat diet and low-dose streptozotocin (30 mg/kg). Male Wistar rats were divided into 5 groups (n = 6/group): Control, T2D, T2D + nitrite, T2D + NaSH, and T2D + nitrite+NaSH. Nitrite and NaSH were administered for nine weeks at a dose of 50 mg/L (in drinking water) and 0.28 mg/kg (daily intraperitoneal injection), respectively. Serum levels of urea and creatinine, and mRNA expressions of PEPCK, G6Pase, FBPase, PC, PI3K, AKT, PGC-1α, and FoxO1 in the renal tissue, were measured at the end of the study.

Results: Nitrite decreased mRNA expression of PEPCK by 39%, G6Pase by 43%, FBPase by 41%, PC by 63%, PGC-1α by 45%, and FoxO1 by 27% in the renal tissue of rats with T2D; co-administration of nitrite and NaSH further decreases FoxO1, while had no additive effects on the tissue expression of the other genes. In addition, nitrite+NaSH decreased elevated serum urea levels by 58% and creatinine by 37% in rats with T2D.

Conclusion: The inhibitory effect of nitrite on gluconeogenesis in T2D rats is at least in part due to decreased mRNA expressions of renal gluconeogenic genes. Unlike effects on hepatic gluconeogenesis, co-administration of nitrite and NaSH has no additive effects on genes involved in renal gluconeogenesis in rats with T2D.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2021.119870DOI Listing

Publication Analysis

Top Keywords

renal gluconeogenesis
16
nitrite nash
16
additive effects
12
rats t2d
12
sodium hydrosulfide
8
renal
8
rats
8
hepatic gluconeogenesis
8
co-administration sodium
8
sodium nitrite
8

Similar Publications

Fructose-1,6-bisphosphatase 1 (FBP1) is a key gluconeogenic enzyme that plays complex and context-dependent roles in cancer biology. This review comprehensively examines FBP1's dual functions as both a tumor suppressor and an oncogene across various cancer types. In many cancers, such as hepatocellular carcinoma, clear cell renal cell carcinoma, and lung cancer, downregulation of FBP1 contributes to tumor progression through metabolic reprogramming, promoting glycolysis, and altering the tumor microenvironment.

View Article and Find Full Text PDF

Salvianolic acid C promotes renal gluconeogenesis in fibrotic kidneys through PGC1α.

Biochem Biophys Res Commun

January 2025

Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China. Electronic address:

Impaired renal gluconeogenesis is recently identified as a hallmark of chronic kidney disease. However, the therapeutic approach to promote renal gluconeogenesis in CKD is still lacking. We aimed to study whether Salvianolic acid C (SAC), a nature compound extracted from the traditional Chinese medicine Danshen, inhibits renal fibrosis through promotion of gluconeogenesis.

View Article and Find Full Text PDF

Background: Renal fibrosis, a hallmark of chronic kidney disease, is closely associated with dysregulated gluconeogenesis. Tanshinone I (Tan I), a bioactive compound derived from the traditional Chinese medicine Danshen, exhibits antifibrotic and anti-inflammatory properties. However, its effects on gluconeogenesis and the mechanisms through which it alleviates renal fibrosis remain unclear.

View Article and Find Full Text PDF

Recent clinical trials using synthetic incretin hormones, glucagon-like peptide 1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists have demonstrated that these treatments ameliorated many complications related to obesity, emphasizing the significant impact of body weight on overall health. Incretins are enteroendocrine hormones secreted by gut endothelial cells triggered by nutrient ingestion. The phenomenon that oral ingestion of glucose elicits a much higher insulin secretion than intra-venous injection of equimolar glucose is known as the incretin effect.

View Article and Find Full Text PDF

Uninephrectomy and sodium-glucose cotransporter 2 inhibitor administration delay the onset of hyperglycemia.

Physiol Rep

November 2024

Division of Cardiovascular Medicine and Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.

The kidneys are essential for glucose homeostasis, as they perform gluconeogenesis, utilize glucose, and reabsorb glucose. Reabsorption is performed by SGLT2, which is responsible for about 90%. However, little is known about how renal glucose handling is altered in patients with chronic kidney disease (CKD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!