Spectroscopy of NbSe Using Energy-Tunable Defect-Embedded Quantum Dots.

Nano Lett

The Racah Institute of Physics, The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel.

Published: August 2021

Quantum dots have sharply defined energy levels, which can be used for high resolution energy spectroscopy when integrated in tunneling circuitry. Here we report dot-assisted spectroscopy measurements of the superconductor NbSe, using a van der Waals device consisting of a vertical stack of graphene-MoS-NbSe. The MoS tunnel barriers host naturally occurring defects which function as quantum dots, allowing transport via resonant tunneling. The dot energies are tuned by an electric field exerted by a back-gate, which penetrates the graphene source electrode. Scanning the dot potential across the superconductor Fermi energy, we reproduce the NbSe density of states which exhibits a well-resolved two-gap spectrum. Surprisingly, we find that the dot-assisted current is dominated by the lower energy feature of the two NbSe gaps, possibly due to a selection rule which favors coupling between the dots and the orbitals which exhibit this gap.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c02177DOI Listing

Publication Analysis

Top Keywords

quantum dots
12
spectroscopy nbse
4
nbse energy-tunable
4
energy-tunable defect-embedded
4
defect-embedded quantum
4
dots
4
dots quantum
4
dots sharply
4
sharply defined
4
energy
4

Similar Publications

A green methodology for the synthesis of carbon quantum dots (CQDs) from coffee husk without the use of any toxic solvents is proposed in this work. Sonochemical exfoliation of biochar, obtained from the thermal carbonization of coffee husk (from a certified coffee seeds) at low temperature in an air-restricted atmosphere, is described as an alternative procedure for the sustainable production of CQDs. The synthesized CQDs exhibited blue fluorescence with a strong maximum emission band at 410 nm when excited at a maximum absorption wavelength of 330 nm.

View Article and Find Full Text PDF

Microwave synthesis of molybdenum disulfide quantum dots and the application in bilirubin sensing.

Methods Appl Fluoresc

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning Province, China, Shenyang, 110004, CHINA.

Molybdenum disulfide quantum dots (MoS2 QDs) is a new type of graphite like nanomaterial, which exhibited well chemical stability, unique fluorescence characteristics, and excellent biocompatibility. The conventional hydrothermal synthesis of MoS2 generally requires a long-term reaction at high temperature and high pressure. Herein, we have developed a simple and fast MoS2 QDs synthesis scheme using microwave heating, and further modified the surface of MoS2 QDs using 3-aminophenylboronic acid.

View Article and Find Full Text PDF

Amplified electrochemiluminescence of Ru(dcbpy) via coreactant active sites on nitrogen-doped graphene quantum dots.

Talanta

January 2025

School of Agricultural Engineering, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan, 471003, China. Electronic address:

Searching for new alternative to tripropylamine (TPrA) with low toxicity and high chemical stability for the tris(4,4'-dicarboxylic acid-2,2'-bipyridyl)ruthenium (II) (Ru(dcbpy)) based coreactant electrochemiluminescence (ECL) system is essential for widespread analytical applications. Here, nitrogen-doped graphene quantum dots (NGQDs) have been discovered to significantly amplify the ECL emission and increase the ECL efficiency of Ru(dcbpy) for the first time. However, the mechanism by which NGQDs act as coreactants is not well comprehended.

View Article and Find Full Text PDF

Structural and photoelectric properties of p-i-n photodiodes based on GeSiSn/Si multiple quantum dots both on Si and silicon-on-insulator (SOI) substrates were investigated. Elastic strained state of grown films was demonstrated by x-ray diffractometry. Annealing of p-i-n structures before the mesa fabrication can improve the ideality factor of current-voltage characteristics.

View Article and Find Full Text PDF

Microorganisms serve as biological factories for the synthesis of nanomaterials such as CdS quantum dots. Based on the uniqueness of sp., a one-step route was explored to directly convert cadmium waste into CdS QDs using these bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!