Control of polymer assemblies in solution is of great importance to determine the properties and applications of these polymer nanostructures. We report a novel co-self-assembly strategy to control the self-assembly outcomes of a micelle-forming amphiphilic block copolymer (BCP) of poly(ethylene oxide) (PEO) and poly[3-(trimethoxysilyl)propyl methacrylate] (PTMSPMA), PEO--PTMSPMA. With a reactive and hydrophobic additive tetraethyl orthosilicate (TEOS), the assembly nanostructures of PEO--PTMSPMA are tunable. The swelling of the PTMSPMA block by hydrophobic TEOS increases the hydrophobic-to-hydrophilic ratio that enables a continuous morphological evolution from spherical micelles to vesicles and eventually to large compound vesicles. TEOS that co-hydrolyzes with the PTMSPMA block can further stabilize and fix these hybrid nanostructures. With high TEOS concentrations, these polymer assemblies can be further converted through thermal annealing into unique silica nanomaterials, including nanospheres, hollow nanoparticles with dual shells, and mesoporous silica frameworks that cannot be synthesized through conventional syntheses otherwise.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c01554 | DOI Listing |
Langmuir
January 2025
Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Shosha, Himeji, Hyogo 671-2201, Japan.
To prepare amphiphilic diblock copolymers (MP), a controlled radical polymerization approach was employed, incorporating hydrophilic poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) with hydrophobic poly(3-methoxypropyl acrylate) (PMPA). The synthesized diblock copolymers feature a PMPC block with a degree of polymerization (DP) of 100 and a PMPA block with DP (=) values of 171 and 552. The hydrophilic PMPC block exhibits biocompatibility, such as inhibition of platelet and protein adsorption, because of its hydrophilic pendant zwitterionic phosphorylcholine groups that have the same chemical structure as cell membrane surfaces.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India.
Bile salts (BS) are naturally occurring steroidal biosurfactants. The ease of functionalization of BSs has boosted their use as inexpensive building blocks for the fabrication of a broad set of value-added soft functional materials. In the present work, three fluorescent bile acid (FBA) derivatives have been synthesized by conjugating anthracene at the side chain of lithocholic acid, deoxycholic acid, and cholic acid to understand the effect of the nature of the steroid nucleus on their physicochemical properties.
View Article and Find Full Text PDFACS Cent Sci
December 2024
Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
An efficient regiospecific co-assembly (RSCA) strategy is developed for general synthesis of mesoporous metal oxides with pore walls precisely decorated by highly dispersed noble metal nanocrystals with customized parameters (diameter and composition). It features the rational utilization of the specific interactions between hydrophilic molecular precursors, hydrophobic noble metal nanocrystals, and amphiphilic block copolymers, to achieve regiospecific co-assembly as confirmed by molecular dynamics simulations. Through this RSCA strategy, we achieved a controllable synthesis of a variety of functional mesoporous metal oxide composites (e.
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, DuShuHu High Education Zone, Suzhou, Jiangsu Province 215123, China. Electronic address:
Cancer stem cells (CSCs) play an important role in the development of triple-negative breast cancer (TNBC), including metastasis, invasion, tumorigenicity, and drug resistance. Moreover, non-CSCs can spontaneously transform into CSCs in special tumor microenvironments, thereby leading to poor prognosis or even failed treatments. Therefore, reversing tumor stem cells into normal tumor cells in a sustained-acting manner is a promising strategy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 58 Gothenburg, Sweden.
The full exploitation of the outstanding mechanical properties of cellulose nanofibrils (CNFs) as potential reinforcements in nanocomposite materials is limited by the poor interactions at the CNF-polymer matrix interface. Within this work, tailor-made copolymers were designed to mediate the interface between CNFs and biodegradable poly(butylene adipate--terephthalate) (PBAT), and their effect on extruded nanocomposite performance was tested. For this purpose, two well-defined amphiphilic anchor-tail diblock copolymer structures were compared, with a fixed anchor block length and a large difference in the hydrophobic tail block length.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!