Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
N-Phenylphenothiazine as an inexpensive, highly reductive and oxygen tolerant organophotocatalyst has exhibited potential in various challenging photochemical transformations. Here we report a general and straightforward method to access structurally diverse N-phenylphenothiazine derivatives by means of a novel electrochemical tool. The introduction of a 2-naphthylamine moiety with an extended π-system and an amine group led to the variation of spectral characterization. Photochemical verification experiments demonstrated that the formed N-arylation products with good efficacy and chemo/site-control displayed competitive catalytic activity in challenging transformations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cc03276c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!