Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Numerous studies have been devoted to understand the reaction kinetics in micelles, where the accessible kinetic time window is often limited by the dynamic range of the employed spectroscopic technique. This is usually accompanied by a selection of probes that comfortably explore time scales where slow solute exchange kinetics is negligible, as compared to the fast excited state reactions. This has led to an undervaluation of the role played by dynamic partitioning of hydrophilic solutes in microheterogeneous media. Here, we employ fluorescence correlation spectroscopy (FCS) and the zwitterionic dye Rhodamine 110 to quantitatively explore the impact of solute exchange on the photoinduced electron transfer between this dye and ,-dimethylaniline in micellar media. Our study elucidates the coupling and interplay between the kinetics of photophysics, quenching, and solute exchange through a quantitative unified molecular-state quenching-kinetic model that describes the steady-state ensemble and FCS data from subnanosecond photon antibunching to millisecond diffusions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.1c02021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!