Nano-optical Imaging of In-Plane Homojunctions in Graphene and MoS van der Waals Heterostructures on Talc and SiO.

J Phys Chem Lett

Physics Department, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.

Published: August 2021

Understanding the impact of doping variations on the physical properties of two-dimensional materials is important for their application in electronic and optoelectronic devices. Here we report a nano-optical study on graphene and MoS homojunctions by placing these two materials partly on top of a layered talc substrate, partly on top of an SiO substrate. By analyzing the nano-Raman scattering from graphene and the nanophotoluminescense emission from MoS, two different doping zones are evident with sub-100 nm wide charge oscillations. The oscillations occur abruptly at the homojuction and extend over longer distances away from the interface, indicating imperfect deposition of the two-dimensional layer on the substrate. These results evidence fine and unexpected details of the homojuctions, important to build better electronic and optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.1c01804DOI Listing

Publication Analysis

Top Keywords

graphene mos
8
electronic optoelectronic
8
optoelectronic devices
8
partly top
8
nano-optical imaging
4
imaging in-plane
4
in-plane homojunctions
4
homojunctions graphene
4
mos van
4
van der
4

Similar Publications

As a graphene-like layered material, molybdenum disulfide (MoS), has attracted increasing attentions for its promising application in electrocatalysis. Whereas MoS still suffers from the sluggish reaction kinetics in oxygen evolution reaction (OER) due to the low density of active sites in most exposed planes. In this work, high density of active sites on MoS basal planes has been obtained by synthesizing mesoporous MoS with Co doping and sulfur vacancies (V).

View Article and Find Full Text PDF

Terahertz Saturable Absorption across Charge Separation in Photoexcited Monolayer Graphene/MoS Heterostructure.

J Phys Chem Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.

Unveiling the nonlinear interactions between terahertz (THz) electromagnetic waves and free carriers in two-dimensional materials is crucial for the development of high-field and high-frequency electronic devices. Herein, we investigate THz nonlinear transport dynamics in a monolayer graphene/MoS heterostructure using time-resolved THz spectroscopy with intense THz pulses as the probe. Following ultrafast photoexcitation, the interfacial charge transfer establishes a nonequilibrium carrier redistribution, leaving free holes in the graphene and trapping electrons in the MoS.

View Article and Find Full Text PDF

Comparison of microplastics heteroaggregation with MoS and graphene oxide nanosheets: Dependence on the configuration and impacts on aquatic transport.

J Hazard Mater

December 2024

School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:

Understanding the behavior and fate of microplastics (MPs) in aquatic environment is crucial for assessing their potential risks. This study investigated the heteroaggregation behaviors of MPs with representative 2D nanosheets, MoS and graphene oxide (GO), under various conditions, focusing on the transport behavior of the resulting aggregates. It was found that the destabilization capabilities of 2D nanosheets are notably stronger than those of well-reported nanoparticles.

View Article and Find Full Text PDF

Toward Fast-Charging and Dendritic-Free Li Growth on Natural Graphite Through Intercalation/Conversion on MoS Nanosheets.

Adv Mater

January 2025

Institute for Superconducting & Electronic Materials (ISEM), Faculty of Engineering and Information Sciences, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia.

Article Synopsis
  • During fast-charging, uneven lithium plating on graphite anodes leads to performance issues and safety risks for lithium-ion batteries due to the formation of a passivation layer known as the solid-electrolyte interphase (SEI).
  • A molybdenum disulfide (MoS) coating on natural graphite modifies the SEI properties, resulting in faster charging times and improved long-term cycling performance by enhancing lithium transport and reducing interfacial resistance.
  • The MoS-NG anode demonstrates superior fast-charging capabilities, achieving a charging time of 14.7 minutes at 80% state of charge, making it a viable option for electric vehicle applications over 300 cycles without sacrificing energy density.
View Article and Find Full Text PDF

The widespread demand for battery-powered technologies has propelled the search for efficient and commercially viable electrode materials with fast-charging abilities. Reported herein is an MoS-expanded graphite (EG) composite as a stable and high-rate lithium-ion battery (LIB) anode, delivering specific capacities of 796 mAh g at 0.5 A g and 320 mAh g at 20 A g over 400 cycles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!