Herein, we report a new series of bifunctional chelators (BFCs) with a high affinity for amyloid aggregates, a strong binding affinity toward Cu(II), and favorable lipophilicity for potential blood-brain barrier penetration. The alkyl carboxylate ester pendant arms offer up to 3 orders of magnitude higher binding affinity toward Cu(II) and enable the BFCs to form stable Cu-radiolabeled complexes. Among the five compounds tested, the Cu-YW-7 and Cu-YW-10 complexes exhibit strong and specific staining of amyloid plaques in ex vivo autoradiography studies. Importantly, these BFCs have promising partition coefficient (log ) values of 0.91-1.26 and show some brain uptake in biodistribution studies using CD-1 mice. Overall, these BFCs could serve as lead compounds for the development of positron emission tomography imaging agents for AD diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.1c02079 | DOI Listing |
Cancers (Basel)
December 2024
Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
: Fibroblast activation protein (FAP)-targeted theranostic radiopharmaceuticals have shown desired tumor-to-background organ selectivity due to the ubiquitous presence of FAP within the tumor microenvironment. However, suboptimal tumor retention and fast clearance have hindered their use to deliver effective cancer therapies. With well-documented FAP-targeting moieties and linkers appending them to optimal chelators, the development of copper radiopharmaceuticals has attracted considerable interest, given the fact that an ideal theranostic pair of copper radionuclides (Cu: t = 12.
View Article and Find Full Text PDFTalanta
December 2024
Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen 518060, China. Electronic address:
The simultaneous detection and removal of Ag from drinking water was crucial for preventing human health, while it was also extremely challenging due to bifunctional materials that combine both Ag adsorption and detection functions rarely being explored. In this study, a benzotrithiophene-based covalent organic framework (TAPA-BTT) was synthesized and applied to detect and remove Ag. TAPA-BTT exhibited high crystallinity, a large specific surface area, and good thermal stability.
View Article and Find Full Text PDFJ Med Chem
January 2025
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Thorium-227 (Th) is an α-emitting radionuclide currently under investigation for targeted alpha therapy. Available chelators used for this isotope suffer from challenging multistep syntheses. Here, we present the synthesis and preclinical evaluation of a novel bifunctional chelator, SCN-Bn-DOTHOPO, which contains an isothiocyanate group that is suitable for conjugation to biological molecules.
View Article and Find Full Text PDFACS Omega
December 2024
College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
Radiometal chelator conjugation is a cornerstone of radioimmunotherapy (RIT). Continued interest in selective placement of chelators remains an active topic of discussion in the field. With several simple site-specific methods being recently reported, it was of interest to investigate the benefits and potential drawbacks of the site-specific method with a full comparison to a more typical random conjugation method that is currently utilized in clinical applications.
View Article and Find Full Text PDFCell Biol Int
December 2024
School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
Rare genetic disorders are low in prevalence and hence there is little or no attention paid to them in the mainstream medical industry. One of the ultra-rare neuromuscular disorders, GNE myopathy is caused due to biallelic mutations in the bifunctional enzyme, GNE (UDP N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase). It catalyses the rate-limiting step in sialic acid biosynthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!