A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Capillary-size flow of human blood plasma: Revealing hidden elasticity and scale dependence. | LitMetric

Capillary-size flow of human blood plasma: Revealing hidden elasticity and scale dependence.

J Biomed Mater Res A

Laboratoire Léon Brillouin (CEA-CNRS), University of Paris-Saclay, Gif-sur-Yvette, France.

Published: February 2022

The dynamical mechanical analysis of blood generally uses models inspired by conventional flows, assuming scale-independent homogeneous flows and without considering fluid-surface boundary interactions. The present experimental study highlights the relevance of using an approach in line with physiological reality providing a strong interaction between the fluid and the boundary interface. New dynamic properties of human blood plasma are found: a finite shear elastic response (solid-like property) is identified in nearly static conditions, which also depends on the scale (being reinforced at small scales). The elastic behavior is confirmed by the induction, without heat transfer, of local hot and cold thermodynamic states evidencing a thermo-mechanical coupling in blood plasma so far known only in elastic materials. This finding opens new routes for medical diagnosis and device fabrication.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.37286DOI Listing

Publication Analysis

Top Keywords

blood plasma
12
human blood
8
capillary-size flow
4
flow human
4
blood
4
plasma revealing
4
revealing hidden
4
hidden elasticity
4
elasticity scale
4
scale dependence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!