Locomotor activity requires fine balance control that strongly depends on the afferent input from the load receptors. Following hindlimb unloading (HU), the kinematic and EMG activity of the hindlimbs is known to change significantly. However, the effects of HU on the integrative control mechanisms of posture and locomotion are not clear. The goal of the present study was to evaluate the center of mass (CoM) dynamic stabilization and associated adaptive changes in the trunk and hindlimb muscle activity during locomotion after 7 days of HU. The EMG signals from the muscles of the low lumbar trunk [m. longissimus dorsi (VERT)] and the hind limb [m. tibialis anterior (TA), m. semitendinosus (ST), m. soleus (SOL)] were recorded together with the hindquarter kinematics during locomotion on a treadmill in six rats before and after HU. The CoM lateral shift in the step cycle significantly increased after HU and coincided with the enhanced activity of the VERT. The mean EMG of the TA and the ST flexor activity increased significantly with reduction of their burst duration. These data demonstrate the disturbances of body balance after HU that can influence the basic parameters of locomotor activity. The load-dependent mechanisms resulted in compensatory adjustments of flexor activity toward a faster gait strategy, such as a trot or gallop, which presumably have supraspinal origin. The neuronal underpinnings of these integrative posture and locomotion mechanisms and their possible reorganization after HU are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.242138 | DOI Listing |
Mol Med
January 2025
Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
Background: Mitochondrial dysfunction and neuronal damage are major sign of cytopathology in Huntington's disease (HD), a neurodegenerative disease. Ubiquitin specific peptidase 11 (USP11) is a deubiquitinating enzyme involved in various physiological processes through regulating protein degradation. However, its specific role in HD is unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
Inflammation aggravates secondary damage following spinal cord injury (SCI). M1 microglia induce inflammation and exert neurotoxic effects, whereas M2 microglia exert anti-inflammatory and neuroprotective effects. The sine oculis homeobox (SIX) gene family consists of six members, including sine oculis homeobox homolog 1 (SIX1)-SIX6.
View Article and Find Full Text PDFJ Mol Histol
January 2025
Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China.
Objective: This study aimed to elucidate the role of pyruvate dehydrogenase kinase-1 (PDK1) in cervical cancer (CC) by investigating its impact on cell proliferation, migration, and epithelial-mesenchymal transition (EMT) under hypoxic conditions.
Methods: PDK1-silenced CC cell lines were established using lentiviral shRNA technology. Cell migration and invasion were assessed through scratch and Transwell assays, respectively.
Brain Behav
January 2025
Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
Purpose: Essential tremor (ET) is a prevalent movement disorder, yet current therapeutic options remain limited. Emerging evidence implicates leucine-rich repeat and immunoglobulin-like domain-containing protein (Lingo-1) and neuroinflammation in the pathophysiology of ET. This study aimed to investigate whether agmatine, a biogenic amine neuromodulator attenuates tremors and modulates the expression of Lingo-1 and proinflammatory markers in a rodent model of ET.
View Article and Find Full Text PDFJ Equine Vet Sci
January 2025
University of Florida Department of Animal Sciences, 2250 Shealy Dr., Gainesville, FL, United States, 32611; UF Genetics Institute, 2033 Mowry Rd., Gainesville, FL, United States, 32611. Electronic address:
The value and welfare of a performance horse are closely tie to locomotor behaviors, but we lack objective and quantitative measures for these characteristics, and qualitative approaches for assessing gait do not provide measures suitable for large-scale biomechanical research studies. Digital video analysis utilizing artificial intelligence-based strategies promise to meet the need for an economical, accurate, repeatable and objective technique for field quantification of equine locomotion. Here we describe pilot work using a consumer-level digital video camera to capture high-resolution and high-speed videos of horses moving at the trot during mandatory inspections for international-level eventing competitions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!