Approximate symmetry in the third reported structure of a metal complex of L-DOPA.

Acta Crystallogr C Struct Chem

Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055, USA.

Published: August 2021

Although l-DOPA is a major drug that has been used for more than 50 years to treat the motor symptoms of Parkinson’s disease, the Cambridge Structural Database contains only two structures in which it is coordinated to a metal. Why are there not more? The new structure is also notable for an approximate 4 axis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340035PMC
http://dx.doi.org/10.1107/S2053229621007452DOI Listing

Publication Analysis

Top Keywords

approximate symmetry
4
symmetry third
4
third reported
4
reported structure
4
structure metal
4
metal complex
4
complex l-dopa
4
l-dopa l-dopa
4
l-dopa major
4
major drug
4

Similar Publications

In this work, we theoretically explore whether a parity-violating/chiral light-matter interaction is required to capture all relevant aspects of chiral polaritonics or if a parity-conserving/achiral theory is sufficient (e.g., long-wavelength/dipole approximation).

View Article and Find Full Text PDF

Organometallic antimony(V) complexes were prepared as model compounds to better understand the interactions of chiral chelating diols with this metalloid. These complexes feature three aryl groups (-xylyl or -tolyl) and a bidentate -2,3-butanediolate. The -xylyl and -tolyl complexes of either enantiomerically pure 2,3-butanediolate or 2,3-butanediolate (compounds -) crystallized in Sohncke space groups, as expected.

View Article and Find Full Text PDF

Energy spectrum theory of incommensurate systems.

Natl Sci Rev

December 2024

School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China.

Because of the lack of translational symmetry, calculating the energy spectrum of an incommensurate system has always been a theoretical challenge. Here, we propose a natural approach to generalize energy band theory to incommensurate systems without reliance on the commensurate approximation, thus providing a comprehensive energy spectrum theory of incommensurate systems. Except for a truncation-dependent weighting factor, the formulae of this theory are formally almost identical to that of Bloch electrons, making it particularly suitable for complex incommensurate structures.

View Article and Find Full Text PDF

The main purpose of this study is to characterize the nature of the low-energy singlet excited states of the anthranilic acid homodimer (AA) and their changes (symmetry breaking) caused by deformation of the centrosymmetric, ground state structure of AA towards the geometry of the S state. We employ both the correlated ab initio methods (approximate Coupled Clusters Singles and Doubles-CC2 and CASSCF/NEVPT2) as well as the DFT/TDDFT calculations with two exchange-correlation functionals, i.e.

View Article and Find Full Text PDF

GPU-Accelerated Solution of the Bethe-Salpeter Equation for Large and Heterogeneous Systems.

J Chem Theory Comput

December 2024

Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.

We present a massively parallel GPU-accelerated implementation of the Bethe-Salpeter equation (BSE) for the calculation of the vertical excitation energies (VEEs) and optical absorption spectra of condensed and molecular systems, starting from single-particle eigenvalues and eigenvectors obtained with density functional theory. The algorithms adopted here circumvent the slowly converging sums over empty and occupied states and the inversion of large dielectric matrices through a density matrix perturbation theory approach and a low-rank decomposition of the screened Coulomb interaction, respectively. Further computational savings are achieved by exploiting the nearsightedness of the density matrix of semiconductors and insulators to reduce the number of screened Coulomb integrals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!