AI Article Synopsis

  • Sulfuretin (SFR), an important natural flavonoid, has been shown to have significant antioxidant activity, particularly in its ability to scavenge hydroperoxyl radicals using density functional theory calculations.
  • In aqueous environments at physiological pH (7.40), SFR's anionic form demonstrates a scavenging rate of 4.75 × 10 M/s, making it a highly effective radical scavenger compared to common antioxidants like resveratrol and ascorbic acid.
  • In non-polar conditions, the neutral form of SFR is also effective, with a scavenging rate of 1.79 × 10 M/s, suggesting that SFR has superior radical scavenging

Article Abstract

Sulfuretin (SFR), which is isolated from , , is one of the most important natural flavonoids. This compound is known to have numerous biological activities; among these, the antioxidant activity has not been thoroughly studied yet. In this study, the hydroperoxyl scavenging activity of SFR was examined by using density functional theory calculations. SFR is predicted to be an excellent HOO scavenger in water at pH = 7.40 with = 4.75 × 10 M s, principally due to an increase in the activity of the anionic form following the single-electron transfer mechanism. Consistently, the activity of the neutral form is more prominent in the non-polar environment with = 1.79 × 10 M s following the formal hydrogen transfer mechanism. Thus, it is predicted that SFR exhibits better HOO antiradical activity than typical antioxidants such as resveratrol, ascorbic acid or Trolox in the lipid medium. The hydroperoxyl radical scavenging of SFR in the aqueous solution is approximately 530 times faster than that of Trolox and similar to ascorbic acid or resveratrol. This suggests that SFR is a promising radical scavenger in physiological environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8316794PMC
http://dx.doi.org/10.1098/rsos.210626DOI Listing

Publication Analysis

Top Keywords

hydroperoxyl radical
8
radical scavenging
8
scavenging activity
8
transfer mechanism
8
ascorbic acid
8
activity
6
sfr
6
activity sulfuretin
4
sulfuretin insights
4
insights theory
4

Similar Publications

Theoretical Study of Antioxidant and Prooxidant Potency of Protocatechuic Aldehyde.

Int J Mol Sci

January 2025

Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia.

In this study, the antioxidant and prooxidant potency of protocatechuic aldehyde (PCA) was evaluated using density functional theory (DFT). The potency of direct scavenging of hydroperoxyl (HOO) and lipid peroxyl radicals (modeled by vinyl peroxyl, HC=CHOO) involved in lipid peroxidation was estimated. The repair of oxidative damage in biomolecules (lipids, proteins and nucleic acids) and the prooxidant ability of PCA phenoxyl radicals were considered.

View Article and Find Full Text PDF

Aging of Polystyrene Micro/Nanoplastics Enhances Cephalosporin Phototransformation via Structure-Sensitive Interfacial Hydrogen Bonding.

Environ Sci Technol

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China.

Beyond their roles in adsorbing and transporting pollutants, microplastics (MPs) and nanoplastics (NPs), particularly polystyrene variants (PS-M/NPs), have emerged as potential accelerators for the transformation of coexisting contaminants. This study uncovered a novel environmental phenomenon induced by aged PS-M/NPs and delved into the underlying mechanisms. Our findings revealed that the aged PS-M/NP particles significantly amplified the photodegradation of common cephalosporin antibiotics, and the extent of enhancement was tightly correlated to the molecular structures of cephalosporin antibiotics.

View Article and Find Full Text PDF
Article Synopsis
  • A study explored the antioxidant activity of six hydrazone compounds against HOO˙ and CHOO˙ radicals using DFT methods, focusing on three mechanisms: HAT, SETPT, and SPLET.
  • Compound 2 was found to have the highest scavenging rate constants for both radicals, with significant activity in the gas phase as well as in aqueous solutions.
  • Overall, compound 2 demonstrates potential as an effective antioxidant, outperforming some commonly known antioxidants in scavenging activities within physiological environments.
View Article and Find Full Text PDF

Density functional theory (DFT) calculations indicate that [Co(HO)] reacts with two HO molecules to form [(HO)Co(OOH)(HO)] reactant complexes, which decompose through three distinct pathways depending on the relative orientation between the coordinated OOH and HO ligands. The reactive intermediates produced via these activation pathways include hydroperoxyl (OOH)/superoxide (O) radicals, singlet oxygen (O), and Co(III) species [(HO)Co(O)], [(HO)Co(OH)], and [(HO)Co(OH)]. The Co(III) species display from moderate to strong oxidizing abilities that have long been overlooked.

View Article and Find Full Text PDF

In the indoor environment, occupants are exposed to air pollutants originating from continuous indoor sources and exchange with the outdoor air, with the highest concentration episodes dominated by activities performed indoors such as cooking and cleaning. Here we use the INdoor CHEMical model in Python (INCHEM-Py) constrained by measurements from the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign, to investigate the impact of a bleach cleaning event and cooking on indoor air chemistry. Measurements of the concentrations of longer-lived organic and inorganic compounds, as well as measured photolysis rates, have been used as input for the model, and the modelled hydroxyl (OH) radicals, hydroperoxyl radicals, and nitrous acid (HONO) concentrations compared to the measured values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!