Multiferroic materials have attracted great interest because of their underlying new science and promising applications in data storage and mutual control devices. However, they are still very rare and highly imperative to be developed. Here, we report an organic-inorganic hybrid perovskite trimethylchloromethylammonium chromium chloride (TMCM-CrCl), showing the coexistence of magnetic and electric orderings. It displays a paraelectric-ferroelectric phase transition at 397 K with an Aizu notation of 6/, and spin-canted antiferromagnetic ordering with a Néel temperature of 4.8 K. The ferroelectricity originates from the orientational ordering of TMCM cations, and the magnetism is from the [CrCl] framework. Remarkably, TMCM-CrCl is the first experimentally confirmed divalent Cr-based multiferroic material as far as we know. A new category of hybrid multiferroic materials is pointed out in this work, and more Cr-based multiferroic materials will be expectedly developed in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293986 | PMC |
http://dx.doi.org/10.1039/d1sc01871j | DOI Listing |
Phys Rev Lett
December 2024
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
Two-dimensional (2D) materials that exhibit spontaneous magnetization, polarization, or strain (referred to as ferroics) have the potential to revolutionize nanotechnology by enhancing the multifunctionality of nanoscale devices. However, multiferroic order is difficult to achieve, requiring complicated coupling between electron and spin degrees of freedom. We propose a universal method to engineer multiferroics from van der Waals magnets by taking advantage of the fact that changing the stacking between 2D layers can break inversion symmetry, resulting in ferroelectricity as well as magnetoelectric coupling.
View Article and Find Full Text PDFMater Horiz
January 2025
Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, 2500, Australia.
Recently, the emergence of two-dimensional (2D) multiferroic materials has opened a new perspective for exploring topological states. However, instances of tuning topological phase transitions through ferroelectric (FE) polarization in 2D ferromagnetic (FM) materials are relatively rare. Here, we found that 11 single layer (SL) materials, named the MMGeX family, possess both FE and FM properties.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Minjiang Collaborative Center for Theoretical Physics, College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350108, China.
Complex functional materials are characterized by intricate and competing bond orders, making them an excellent platform for evaluating the newly developed strongly constrained and appropriately normed (SCAN) density functional. In this study, we explore the effectiveness of SCAN in simulating the electronic properties of displacive ferroelectrics (BaTiO3 and PbTiO3) and magnetoelectric multiferroics (BiFeO3 and YMnO3), which encompass a broad spectrum of bonding characteristics. Due to a significant reduction in self-interaction error, SCAN manifests its improvements over the Perdew-Burke-Ernzerhof (PBE) method in three aspects: SCAN predicts more accurate ionicity, produces more compact orbitals, and better captures d-orbital anisotropy.
View Article and Find Full Text PDFSci Adv
January 2025
2D Crystal Consortium, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.
Multiferroic materials host both ferroelectricity and magnetism, offering potential for magnetic memory and spin transistor applications. Here, we report a multiferroic chalcogenide semiconductor CuMnSiTe (0.04 ≤ ≤ 0.
View Article and Find Full Text PDFNano Lett
December 2024
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.
Ferro-valleytricity that manifests spin-orbit coupling (SOC)-induced spontaneous valley polarization is generally considered to occur in two-dimensional (2D) materials with out-of-plane spin magnetization. Here, we propose a mechanism to realize SOC-induced valley polarization and ferro-valleytricity in 2D materials with in-plane spin magnetization, wherein the physics correlates to non-collinear magnetism in triangular lattice. Our model analysis provides comprehensive ingredients that allow for ferro-valleytricity with in-plane spin magnetization, revealing that mirror symmetry favors remarkable valley polarization and time-reversal-mirror joint symmetry should be excluded.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!