Synthetic methods that utilise iron to facilitate C-H bond activation to yield new C-C and C-heteroatom bonds continue to attract significant interest. However, the development of these systems is still hampered by a limited molecular-level understanding of the key iron intermediates and reaction pathways that enable selective product formation. While recent studies have established the mechanism for iron-catalysed C-H arylation from aryl-nucleophiles, the underlying mechanistic pathway of iron-catalysed C-H activation/functionalisation systems which utilise electrophiles to establish C-C and C-heteroatom bonds has not been determined. The present study focuses on an iron-catalysed C-H allylation system, which utilises allyl chlorides as electrophiles to establish a C-allyl bond. Freeze-trapped inorganic spectroscopic methods (Fe Mössbauer, EPR, and MCD) are combined with correlated reaction studies and kinetic analyses to reveal a unique and rapid reaction pathway by which the allyl electrophile reacts with a C-H activated iron intermediate. Supporting computational analysis defines this novel reaction coordinate as an inner-sphere radical process which features a partial iron-bisphosphine dissociation. Highlighting the role of the bisphosphine in this reaction pathway, a complementary study performed on the reaction of allyl electrophile with an analogous C-H activated intermediate bearing a more rigid bisphosphine ligand exhibits stifled yield and selectivity towards allylated product. An additional spectroscopic analysis of an iron-catalysed C-H amination system, which incorporates -chloromorpholine as the C-N bond-forming electrophile, reveals a rapid reaction of electrophile with an analogous C-H activated iron intermediate consistent with the inner-sphere radical process defined for the C-H allylation system, demonstrating the prevalence of this novel reaction coordinate in this sub-class of iron-catalysed C-H functionalisation systems. Overall, these results provide a critical mechanistic foundation for the rational design and development of improved systems that are efficient, selective, and useful across a broad range of C-H functionalisations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8278975PMC
http://dx.doi.org/10.1039/d1sc01661jDOI Listing

Publication Analysis

Top Keywords

iron-catalysed c-h
24
c-h
12
c-h activated
12
mechanism iron-catalysed
8
c-h activation/functionalisation
8
c-c c-heteroatom
8
c-heteroatom bonds
8
reaction
8
electrophiles establish
8
c-h allylation
8

Similar Publications

Arene borylation reactions provide direct access to aryl organoboranes, including aryl boronic esters. Precious metals, namely Ir, Rh, Pt, remain the go-to for metal-catalysed borylation reactions, however, significant efforts have been expended in developing Earth-abundant metal alternatives. The iron-catalysed borylation of 2-aryl pyridine derivatives with 9-borabicyclo[3.

View Article and Find Full Text PDF

Triazole-enabled, iron-catalysed linear/branched selective C-H alkylations with alkenes.

Org Biomol Chem

February 2023

Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.

Iron-catalysed C-H alkylations with alkenes were achieved on benzamides by -triazole assistance. A notable switch of the regioselectivity from linear to branched was observed depending on the nature of the olefin employed. The approach allowed for the synthesis of a family of decorated benzamides with ample scope and high levels of chemo-, regio- and site-selectivity.

View Article and Find Full Text PDF

C-H functionalisation reactions offer a sustainable method for molecular construction and diversification. These reactions however remain dominated by precious metal catalysis. While significant interest in iron-catalysed C-H activation reactions has emerged, the isolation, characterisation and mechanistic understanding of these processes remain lacking.

View Article and Find Full Text PDF

Synthesis of phenoxathiins using an iron-catalysed C-H thioarylation.

Org Biomol Chem

February 2022

School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.

Phenoxathiins are an important class of sulfur-containing heterocycle, found as the core component in numerous pharmaceutically active agents and materials. Despite this importance, there are relatively few methods for the synthesis of these heterocycles that avoid complex starting materials, harsh conditions or precious transition metals. We report a two-step synthesis of phenoxathiins from phenols using iron and copper-mediated reactions.

View Article and Find Full Text PDF

An iron-catalysed C-H functionalisation of simple monosubstituted allenes for the synthesis of 1-tetrahydroisoquinolinyl 1,1-disubstituted allenes is reported. This transformation represents the first example of a direct conversion of allenic C-H bonds to C-C bonds through cross dehydrogenative coupling. The optimized protocol features broad scope and employs mild, functional group tolerant conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!