Novel modalities such as PROTAC and RNAi have the ability to inadvertently alter the abundance of endogenous proteins. Currently available in vitro secondary pharmacology assays, which evaluate off-target binding or activity of small molecules, do not fully assess the off-target effects of PROTAC and are not applicable to RNAi. To address this gap, we developed a proteomics-based platform to comprehensively evaluate the abundance of off-target proteins. First, we selected off-target proteins using genetics and pharmacology evidence. This process yielded 2813 proteins, which we refer to as the "selected off-target proteome" (SOTP). An iterative algorithm was then used to identify four human cell lines out of 932. The 4 cell lines collectively expressed ~ 80% of the SOTP based on transcriptome data. Second, we used mass spectrometry to quantify the intracellular and extracellular proteins from the selected cell lines. Among over 10,000 quantifiable proteins identified, 1828 were part of the predefined SOTP. The SOTP was designed to be easily modified or expanded, owing to the rational selection process developed and the label free LC-MS/MS approach chosen. This versatility inherent to our platform is essential to design fit-for-purpose studies that can address the dynamic questions faced in investigative toxicology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8338952PMC
http://dx.doi.org/10.1038/s41598-021-95354-3DOI Listing

Publication Analysis

Top Keywords

off-target proteins
12
cell lines
12
proteins selected
8
proteins
7
off-target
6
proteomic platform
4
platform identify
4
identify off-target
4
proteins associated
4
associated therapeutic
4

Similar Publications

Gene expression is coordinated by a multitude of transcription factors (TFs), whose binding to the genome is directed through multiple interconnected epigenetic signals, including chromatin accessibility and histone modifications. These complex networks have been shown to be disrupted during aging, disease, and cancer. However, profiling these networks across diverse cell types and states has been limited due to the technical constraints of existing methods for mapping DNA:Protein interactions in single cells.

View Article and Find Full Text PDF

Developing novel Lin28 inhibitors by computer aided drug design.

Cell Death Discov

January 2025

The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.

Lin28 is a key regulator of cancer stem cell gene network that promotes therapy-resistant tumor progression in various tumors. However, no Lin28 inhibitor has been approved to treat cancer patients, urging exploration of novel compounds as candidates to be tested for clinical trials. In this contribution, we applied computer-aided drug design (CADD) in combination with quantitative biochemical and biological assays.

View Article and Find Full Text PDF

Monocarboxylate transporter 4 (MCT-4) is involved in various metabolic processes which are crucial in maintaining cellular pH and energy metabolism, and thus influence the tumor microenvironment. The study is aimed to rationally design effective Small interfering RNA (siRNA) that can silence MCT-4. We utilized a comprehensive workflow integrating multiple tools such as siDirect version 2.

View Article and Find Full Text PDF

Modern radiotherapy frequently employs radiosensitizers for radiation dose deposition and triggers an immunomodulatory effect to enhance tumor destruction. However, developing glioma-targeted sensitizers remains challenging due to the blood-brain barrier (BBB) and multicomponent instability. This study aims to green-synthesize transferrin-bismuth nanoparticles (TBNPs) as biosafe radiosensitizers to enhance X-ray absorption by tumors and stimulate the immune response for glioma therapy.

View Article and Find Full Text PDF

Exploring the Inhibition of α-Carbonic Anhydrase by Sulfonamides: Insights into Potential Drug Targeting.

Int J Mol Sci

December 2024

Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.

, the causative agent of toxoplasmosis, is a protozoan parasite capable of infecting a wide range of hosts, posing significant health risks, particularly to immunocompromised individuals and congenital transmission. Current therapeutic options primarily target the active tachyzoite stage but are limited by issues such as toxicity and incomplete efficacy. As a result, there is an urgent need for alternative therapies that can selectively target parasite-specific mechanisms critical for metabolic processes and host-parasite interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!