Hepatic cell mobilization for protection against ischemic myocardial injury.

Sci Rep

Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA.

Published: August 2021

The heart is capable of activating protective mechanisms in response to ischemic injury to support myocardial survival and performance. These mechanisms have been recognized primarily in the ischemic heart, involving paracrine signaling processes. Here, we report a distant cardioprotective mechanism involving hepatic cell mobilization to the ischemic myocardium in response to experimental myocardial ischemia-reperfusion (MI-R) injury. A parabiotic mouse model was generated by surgical skin-union of two mice and used to induce bilateral MI-R injury with unilateral hepatectomy, establishing concurrent gain- and loss-of-hepatic cell mobilization conditions. Hepatic cells, identified based on the cell-specific expression of enhanced YFP, were found in the ischemic myocardium of parabiotic mice with intact liver (0.2 ± 0.1%, 1.1 ± 0.3%, 2.7 ± 0.6, and 0.7 ± 0.4% at 1, 3, 5, and 10 days, respectively, in reference to the total cell nuclei), but not significantly in the ischemic myocardium of parabiotic mice with hepatectomy (0 ± 0%, 0.1 ± 0.1%, 0.3 ± 0.2%, and 0.08 ± 0.08% at the same time points). The mobilized hepatic cells were able to express and release trefoil factor 3 (TFF3), a protein mitigating MI-R injury as demonstrated in TFF3 mice (myocardium infarcts 17.6 ± 2.3%, 20.7 ± 2.6%, and 15.3 ± 3.8% at 1, 5, and 10 days, respectively) in reference to wildtype mice (11.7 ± 1.9%, 13.8 ± 2.3%, and 11.0 ± 1.8% at the same time points). These observations suggest that MI-R injury can induce hepatic cell mobilization to support myocardial survival by releasing TFF3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8339068PMC
http://dx.doi.org/10.1038/s41598-021-94170-zDOI Listing

Publication Analysis

Top Keywords

cell mobilization
16
mi-r injury
16
hepatic cell
12
ischemic myocardium
12
support myocardial
8
myocardial survival
8
hepatic cells
8
myocardium parabiotic
8
parabiotic mice
8
10 days reference
8

Similar Publications

Hepatic lipid accumulation, or Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), is a significant risk factor for liver cancer. Despite the rising incidence of MASLD, the underlying mechanisms of steatosis and lipotoxicity remain poorly understood. Interestingly, lipid accumulation also occurs during fasting, driven by the mobilization of adipose tissue-derived fatty acids into the liver.

View Article and Find Full Text PDF

Brain-derived neurotropic factor (BDNF) is expressed by skeletal muscle as a myokine. Our previous work showed that the active precursor, proBDNF, is the predominant form of BDNF expressed in skeletal muscle, and that following skeletal muscle injury, proBDNF levels are significantly increased. However, the function of the muscle-derived proBDNF in injury-induced inflammation has yet to be fully understood.

View Article and Find Full Text PDF

Neutrophil and Colorectal Cancer.

Int J Mol Sci

December 2024

Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.

Colorectal cancer (CRC) is often associated with metastasis and recurrence and is the leading cause of cancer-related mortality. In the progression of CRC, recent studies have highlighted the critical role of neutrophils, particularly tumor-associated neutrophils (TANs). TANs have both tumor-promoting and tumor-suppressing activities, contributing to metastasis, immunosuppression, angiogenesis, and epithelial-to-mesenchymal transition.

View Article and Find Full Text PDF

Background: Fabry disease is an X-linked lysosomal storage disorder due to a deficiency of α-galactosidase A (α-gal A) activity. Our goal was to correct the enzyme deficiency in Fabry patients by transferring the cDNA for α-gal A into their CD34+ hematopoietic stem/progenitor cells (HSPCs). Overexpression of α-gal A leads to secretion of the hydrolase; which can be taken up and used by uncorrected bystander cells.

View Article and Find Full Text PDF

Cigarette smoke extract induces p38-mediated expression and ROS/rho-mediated translocation of alpha 2C adrenoceptor in human microvascular smooth muscle cells.

Prog Cardiovasc Dis

January 2025

Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar. Electronic address:

Raynaud's phenomenon (RP) is a vascular disease characterized by exaggerated vasoconstriction in response to stressors, mainly cold and emotional stress. This vasoconstriction is mediated solely by alpha 2C-adrenoceptors (α-AR) expressed in vascular smooth muscle cells of dermal arterioles. Several factors, among which is cigarette smoking, are associated with aggravated symptoms of and increased risk for RP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!