Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The salivary glands of female ticks degenerate rapidly by apoptosis and autophagy after feeding. Bcl-2 family proteins play an important role in the apoptosis pathways, but the functions of these proteins in ticks are unclear. We studied Bcl-2 and Bax homologs from Rhipicephalus haemaphysaloides and determined their functions in the degeneration of the salivary glands.
Methods: Two molecules containing conserved BH (Bcl-2 family homology) domains were identified and named RhBcl-2 and RhBax. After protein purification and mouse immunization, specific polyclonal antibodies (PcAb) were created in response to the recombinant proteins. Reverse transcription quantitative PCR (RT-qPCR) and western blot were used to detect the presence of RhBcl-2 and RhBax in ticks. TUNEL assays were used to determine the level of apoptosis in the salivary glands of female ticks at different feeding times after gene silencing. Co-transfection and GST pull-down assays were used to identify interactions between RhBcl-2 and RhBax.
Results: The RT-qPCR assay revealed that RhBax gene transcription increased significantly during feeding at all tick developmental stages (engorged larvae, nymphs, and adult females). Transcriptional levels of RhBcl-2 and RhBax increased more significantly in the female salivary glands than in other tissues post engorgement. RhBcl-2 silencing significantly inhibited tick feeding. In contrast, RhBax interference had no effect on tick feeding. TUNEL staining showed that apoptosis levels were significantly reduced after interference with RhBcl-2 expression. Co-transfection and GST pull-down assays showed that RhBcl-2 and RhBax could interact but not combine in the absence of the BH3 domain.
Conclusions: This study identified the roles of RhBcl-2 and RhBax in tick salivary gland degeneration and finds that the BH3 domain is a key factor in their interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336254 | PMC |
http://dx.doi.org/10.1186/s13071-021-04879-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!