Exploring functionality of the reverse β-oxidation pathway in Corynebacterium glutamicum for production of adipic acid.

Microb Cell Fact

Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden.

Published: August 2021

Background: Adipic acid, a six-carbon platform chemical mainly used in nylon production, can be produced via reverse β-oxidation in microbial systems. The advantages posed by Corynebacterium glutamicum as a model cell factory for implementing the pathway include: (1) availability of genetic tools, (2) excretion of succinate and acetate when the TCA cycle becomes overflown, (3) initiation of biosynthesis with succinyl-CoA and acetyl-CoA, and (4) established succinic acid production. Here, we implemented the reverse β-oxidation pathway in C. glutamicum and assessed its functionality for adipic acid biosynthesis.

Results: To obtain a non-decarboxylative condensation product of acetyl-CoA and succinyl-CoA, and to subsequently remove CoA from the condensation product, we introduced heterologous 3-oxoadipyl-CoA thiolase and acyl-CoA thioesterase into C. glutamicum. No 3-oxoadipic acid could be detected in the cultivation broth, possibly due to its endogenous catabolism. To successfully biosynthesize and secrete 3-hydroxyadipic acid, 3-hydroxyadipyl-CoA dehydrogenase was introduced. Addition of 2,3-dehydroadipyl-CoA hydratase led to biosynthesis and excretion of trans-2-hexenedioic acid. Finally, trans-2-enoyl-CoA reductase was inserted to yield 37 µg/L of adipic acid.

Conclusions: In the present study, we engineered the reverse β-oxidation pathway in C. glutamicum and assessed its potential for producing adipic acid from glucose as starting material. The presence of adipic acid, albeit small amount, in the cultivation broth indicated that the synthetic genes were expressed and functional. Moreover, 2,3-dehydroadipyl-CoA hydratase and β-ketoadipyl-CoA thiolase were determined as potential target for further improvement of the pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336102PMC
http://dx.doi.org/10.1186/s12934-021-01647-7DOI Listing

Publication Analysis

Top Keywords

adipic acid
20
reverse β-oxidation
16
β-oxidation pathway
12
acid
9
corynebacterium glutamicum
8
pathway glutamicum
8
glutamicum assessed
8
condensation product
8
cultivation broth
8
23-dehydroadipyl-coa hydratase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!