Stem Cells in Mammary Health and Milk Production.

Curr Stem Cell Res Ther

Department of Animal and Veterinary Sciences, University of Vermont, Burlington, Vermont, USA.

Published: April 2022

Adult stem cells like mammary and mesenchymal stem cells have received significant attention because these stem cells possess therapeutic potential in treating many animal diseases. These cells can be administered in an autologous or allogenic fashion, either freshly isolated from the donor tissue or previously cultured and expanded in vitro. The expansion of adult stem cells is a prerequisite before therapeutic application because sufficient numbers are required in dosage calculation. Stem cells directly and indirectly (by secreting various growth factors and angiogenic factors called secretome) act to repair and regenerate injured tissues. Recent studies on mammary stem cells showed in vivo and in vitro expansion ability by removing the blockage of asymmetrical cell division. Compounds like purine analogs (xanthosine, xanthine, and inosine) or hormones (progesterone and bST) help increase stem cell population by promoting cell division. Such methodology of enhancing stem cell number, either in vivo or in vitro, may help in preclinical studies for translational research like treating diseases such as mastitis. The application of mesenchymal stem cells has also been shown to benefit mammary gland health due to the 'homing' property of stem cells. In addition to that, the multiple positive effects of stem cell secretome are on mammary tissue; healing and killing bacteria is novel in the production of quality milk. This systematic review discusses some of the studies on stem cells that have been useful in increasing the stem cell population and increasing mammary stem/progenitor cells. Finally, we provide insights into how enhancing mammary stem cell population could potentially increase terminally differentiated cells, ultimately leading to more milk production.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1574888X16666210804111516DOI Listing

Publication Analysis

Top Keywords

stem cells
40
stem cell
20
stem
15
cells
12
cell population
12
cells mammary
8
milk production
8
adult stem
8
mesenchymal stem
8
vitro expansion
8

Similar Publications

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

ANAC044 orchestrates mitochondrial stress signaling to trigger iron-induced stem cell death in root meristems.

Proc Natl Acad Sci U S A

January 2025

Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.

View Article and Find Full Text PDF

Dual-Anion-Rich Polymer Electrolytes for High-Voltage Solid-State Lithium Metal Batteries.

ACS Nano

January 2025

Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.

Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.

View Article and Find Full Text PDF

Perianal melanosis.

Br J Dermatol

January 2025

Department of Dermatology, Taiyuan Central Hospital, 030001,Taiyuan, China.

View Article and Find Full Text PDF

Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?

Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.

What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!