A state-of-the-art implementation of a binaural cochlear-implant sound coding strategy inspired by the medial olivocochlear reflex.

Hear Res

Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain.; Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca Salamanca 37007 Spain; Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca 37007 Spain. Electronic address:

Published: September 2021

Cochlear implant (CI) users find it hard and effortful to understand speech in noise with current devices. Binaural CI sound processing inspired by the contralateral medial olivocochlear (MOC) reflex (an approach termed the 'MOC strategy') can improve speech-in-noise recognition for CI users. All reported evaluations of this strategy, however, disregarded automatic gain control (AGC) and fine-structure (FS) processing, two standard features in some current CI devices. To better assess the potential of implementing the MOC strategy in contemporary CIs, here, we compare intelligibility with and without MOC processing in combination with linked AGC and FS processing. Speech reception thresholds (SRTs) were compared for an FS and a MOC-FS strategy for sentences in steady and fluctuating noises, for various speech levels, in bilateral and unilateral listening modes, and for multiple spatial configurations of the speech and noise sources. Word recall scores and verbal response times in a word recognition test (two proxies for listening effort) were also compared for the two strategies in quiet and in steady noise at 5 dB signal-to-noise ratio (SNR) and the individual SRT. In steady noise, mean SRTs were always equal or better with the MOC-FS than with the standard FS strategy, both in bilateral (the mean and largest improvement across spatial configurations and speech levels were 0.8 and 2.2 dB, respectively) and unilateral listening (mean and largest improvement of 1.7 and 2.1 dB, respectively). In fluctuating noise and in bilateral listening, SRTs were equal for the two strategies. Word recall scores and verbal response times were not significantly affected by the test SNR or the processing strategy. Results show that MOC processing can be combined with linked AGC and FS processing. Compared to using FS processing alone, combined MOC-FS processing can improve speech intelligibility in noise without affecting word recall scores or verbal response times.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.heares.2021.108320DOI Listing

Publication Analysis

Top Keywords

word recall
12
recall scores
12
scores verbal
12
verbal response
12
response times
12
processing
9
medial olivocochlear
8
speech noise
8
current devices
8
moc processing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!