Slow AMPA receptors in hippocampal principal cells.

Cell Rep

Molecular Neuroscience and Biophysics, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany; Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, 10115 Berlin, Germany. Electronic address:

Published: August 2021

Glutamate receptor ion channels, including α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, mediate fast excitatory neurotransmission in the CNS. Previous work suggested that AMPA receptors produce a synaptic current with a millisecond duration. However, we find that about two-thirds of principal cells in the hippocampal CA1 region also express AMPA receptors with reduced desensitization that can stay active for half a second after repetitive stimuli. These slow AMPA receptors are expressed at about half of the synapses, with a flat spatial distribution. The increased charge transfer from slow AMPA receptors allows short-term potentiation from a postsynaptic locus and reliable triggering of action potentials. Biophysical and pharmacological observations imply slow AMPA receptors incorporate auxiliary proteins, and their activation lengthens miniature synaptic currents. These data indicate that AMPA receptors are a major source of synaptic diversity. Synapses harboring slow AMPA receptors could have unique roles in hippocampal function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8356020PMC
http://dx.doi.org/10.1016/j.celrep.2021.109496DOI Listing

Publication Analysis

Top Keywords

ampa receptors
36
slow ampa
20
receptors
9
principal cells
8
ampa
8
slow
5
receptors hippocampal
4
hippocampal principal
4
cells glutamate
4
glutamate receptor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!