Radiation dosimetry was carried out at the exposure facility (EF) and the pressurized module (PM) of the Japanese Kibo module installed in the International Space Station as one study on environmental monitoring for the Tanpopo mission. Three exposure panels and three references including biological and organic samples and luminescence dosimeters were launched to obtain data for different exposure durations during 3 years from May 2015 to July 2018. The dosimeters were equipped with additional shielding materials (0.55, 2.95, and 6.23 g/cm mass thickness). The relative dose variation, as a function of shielding mass thickness, was observed and compared with Monte Carlo simulations with respect to galactic cosmic rays (GCRs) and typical solar energetic particles (SEPs). The mean annual dose rates were  = 231 ± 5 mGy/year at the EF and  = 82 ± 1 mGy/year at the PM during the 3 years. The PM is well shielded, and the GCR simulation indicated that the measured mean dose reduction ratio inside the module (/ = 0.35) required ∼26 g/cm additional shielding mass thickness. Observed points of the dose reduction tendency could be explained by the energy ranges of protons (10-100 MeV), where the protons passed through, or were absorbed in, the shielding materials of different mass thickness that surrounded dosimeters.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ast.2020.2427DOI Listing

Publication Analysis

Top Keywords

mass thickness
16
radiation dosimetry
8
exposure facility
8
international space
8
space station
8
tanpopo mission
8
additional shielding
8
shielding materials
8
shielding mass
8
thickness observed
8

Similar Publications

Salivary steroids in acute central serous chorioretinopathy.

Int Ophthalmol

January 2025

University of Pittsburgh, UPMC Eye Center, 203 Lothrop Street, Pittsburgh, PA, 15213, USA.

Purpose: To analyze levels of salivary steroids, including 17-OH-progesterone (17-OHP), androstenedione, dehydroepiandrosterone, cortisol, cortisone, progesterone, testosterone, and estradiol, in patients with acute central serous chorioretinopathy (CSCR) patients.

Methods: Acute CSCR patients and healthy individuals were included in this observational case-control study. Levels of salivary steroids were determined by high-performance liquid chromatography with tandem mass spectrometry detection.

View Article and Find Full Text PDF

Sport participation affects body composition and bone health, but the association between sport, body composition, and bone health in female athletes is complex. We compared areal bone mineral density (aBMD, DXA) and tibial volumetric bone mineral density (vBMD), geometry, microarchitecture, and estimated strength (HR-pQCT) in cross-country runners (n = 22), gymnasts (n = 23) and lacrosse players (n = 35), and investigated associations of total body lean mass (TBLM), team, and their interaction with tibial bone outcomes. Total body (TB), total hip (TH), femoral neck (FN), and lumbar spine (LS) aBMD were higher in gymnasts than runners (p < 0.

View Article and Find Full Text PDF

Prevalence and Clinical Associations of Peripapillary Hyperreflective Ovoid Mass-like Structures in Craniosynostosis.

J Neuroophthalmol

January 2025

Department of Ophthalmology (JGJ-C, TE, Y-HC, LRD, RAG), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Frank H. Netter Medical School (JGJ-C), North Haven, Connecticut; and Department of Anesthesiology (DZ), Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.

Background: Patients with craniosynostosis are at high risk of developing elevated intracranial pressure (ICP) causing papilledema and secondary optic atrophy. Diagnosing and monitoring optic neuropathy is challenging because of multiple causes of vision loss including exposure keratopathy, amblyopia, and cognitive delays that limit examination. Peripapillary hyperreflective ovoid mass-like structures (PHOMS) are an optical coherence tomography (OCT) finding reported in association with papilledema and optic neuropathy.

View Article and Find Full Text PDF

Impact of endometrial thickness and its combined effect with maternal age on singleton adverse neonatal outcomes in frozen-thawed embryo transfer cycles.

Front Endocrinol (Lausanne)

January 2025

Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

Background: Thin endometrial thickness (EMT) and advanced age are both common risk factors for adverse neonatal outcomes (ANOs). However, studies evaluating the impact of EMT and combined effect of EMT and age on ANOs remain scarce with conflicts.

Method: A retrospective cohort study was conducted on 7,715 singleton deliveries from frozen embryo transfer (FET) cycles between 2017 and 2021.

View Article and Find Full Text PDF

Highly Permselective Contorted Polyamide Desalination Membranes with Enhanced Free Volume Fabricated by mLbL Assembly.

ACS Appl Mater Interfaces

January 2025

Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States.

The permeability-selectivity trade-off in polymeric desalination membranes limits the efficiency and increases the costs of reverse osmosis and nanofiltration systems. Ultrathin contorted polyamide films with enhanced free volume demonstrate an impressive 8-fold increase in water permeance while maintaining equivalent salt rejection compared to conventional polyamide membranes made with -phenylenediamine and trimesoyl chloride monomers. The solution-based molecular layer-by-layer (mLbL) deposition technique employed for membrane fabrication sequentially reacts a shape-persistent contorted diamine monomer with a trimesoyl chloride monomer, forming highly cross-linked, dense polyamide networks while avoiding the kinetic and mass transfer limitations of traditional interfacial polymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!