For the past three decades, laser use has been investigated, mainly on implant applications, as well as hard and soft tissue processing on orthopedics. However, despite significant technological advances and achievements in Biophotonics, lasers have yet to emerge as a successful tool for hard-tissue manipulation (e.g., osseous tissue). Indeed, a careful search in relevant literature reveals a limited number of laser-based clinical applications in orthopedics, except for the low-level laser therapy applications. In this review article, we give a brief overview of the biophysical mechanisms of bone tissue and biocompatible implants laser surgery and, in parallel, we summarize some specific pre-clinical and clinical laser applications in orthopedics. Taking into consideration the complexity of laser-based applications in inhomogeneous musculoskeletal biostructures and/or implants, it is justified to state that applying laser radiation is still an open field of multidisciplinary research before performing interventions in clinical praxis. The evidence from this study indicates the need for more experimental and theoretical studies regarding light transport on soft and hard tissues, in order to further enhance safe and efficient laser applications in orthopedics. This undoubtedly implies the need for developing modern light delivery devices for laser surgery, by means of implementing robotic guidance, specialized for medical procedures on various anatomic structures. The aforementioned studies could eventually revolutionize the clinical applications of laser technology in orthopedics.

Download full-text PDF

Source
http://dx.doi.org/10.1615/JLongTermEffMedImplants.2021038059DOI Listing

Publication Analysis

Top Keywords

applications orthopedics
12
laser
8
clinical applications
8
laser surgery
8
laser applications
8
applications
7
orthopedics
5
facts myths
4
myths lasers
4
lasers orthopedic
4

Similar Publications

Type 2 diabetes mellitus (T2DM) represents a chronic metabolic disorder characterized by disrupted carbohydrate and lipid balance, resulting in hyperglycemia. This study evaluated the impact of polysaccharides derived from Cynanchum auriculatum Royle ex Wight (CRP) on mitigating hyperglycemia and modulating intestinal microbiota in T2DM mice. Findings indicated that CRP is mainly linked by →6)α-D-Glcp-(1→ and CRP-H demonstrated greater efficacy than CRP-L in regulating hypoglycemic-related indicators such as serum high-density lipoprotein cholesterol (HDL-c) level.

View Article and Find Full Text PDF

Danshensu enhances autophagy and reduces inflammation by downregulating TNF-α to inhibit the NF-κB signaling pathway in ischemic flaps.

Phytomedicine

January 2025

Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China, ; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China. Electronic address:

Background: The significant distal necrosis of the random-pattern skin flaps greatly restricts their clinical applications in flap transplantation. Previous studies have demonstrated the potential of danshensu (DSS) to alleviate ischemic tissue injury. However, no research to date has confirmed whether DSS can improve the survival of ischemic flaps.

View Article and Find Full Text PDF

Background: Robotic assistance has become increasingly prevalent in spinal surgery in recent years, emerging as a tool to increase accuracy and precision and lower complication rates and radiation exposure. The 7 and 8 Annual Seattle Science Foundation (SSF) Robotics Courses showcased presentations and demonstrations from some of the field's most experiences leaders on latest topics in robotics and spinal surgery, including cutting-edge preoperative planning technologies, augmented reality (AR) in the operating room, cervical fusion with transpedicular screws, and neuro-oncologic management. We provide a scoping review of the use of robotics technology in spinal surgery featuring highlights from the 7 and 8 Annual SSF Robotics Courses.

View Article and Find Full Text PDF

Background: Electromagnetic navigation (EMN) is an advanced technology increasingly utilized in orthopedic surgery for its ability to provide real-time intraoperative guidance. Its application in spinal surgery is evolving rapidly, particularly for complex cases like tumor lesions. Spinal osteoblastomas, characterized by their benign nature, primarily affect the posterior elements of the spine.

View Article and Find Full Text PDF

Introduction: Numerous orthopaedic procedures including dynamic hip screw plating and various osteotomies require placement of a reference guide pin or K wire to direct bone cuts or for drilling screw holes. Appropriate positioning of these wires is a critical component of surgery. Irrespective of whether one is a seasoned surgeon or an apprentice, these wires often need repositioning and readjustment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!