Fate of Salmonella and Enterohemorrhagic Escherichia coli on Wheat Grain.

J Food Prot

Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824, USA.

Published: December 2021

Abstract: Wheat flour has been connected to outbreaks of foodborne illnesses with increased frequency in recent years, specifically, outbreaks involving Salmonella enterica and enterohemorrhagic Escherichia coli (EHEC). However, there is little information regarding the survival of these pathogens on wheat grain during long-term storage in a low-moisture environment. This study aims to evaluate the long-term survival of these enteric pathogens on wheat grain over the course of a year. Hard red spring wheat was inoculated with strains of four serovars of Salmonella (Enteritidis, Agona, Tennessee, and Montevideo) and six serotypes of EHEC (O157:H7, O26:H11, O121:H19, O45:NM, O111:H8, and O103:H2) in triplicate, sealed in Mylar bags to maintain the water activity, and stored at room temperature (22 ± 1°C). The survival of each pathogen was evaluated by plating onto differential media. Viable counts of strains from all four serovars of Salmonella (Enteritidis, Agona, Tennessee, and Montevideo) were detected on wheat grain stored at room temperature (22 ± 1°C) for the duration of the study (52 weeks). Viable counts of strains from EHEC serotypes O45:NM, O111:H8, and O26:H11 were only detected for 44 weeks, and strains from serotypes O157:H7, O121:H19, and O103:H2 were only detected for 40 weeks until they passed below the limit of detection (2.0 log CFU/g). The D-values were found to be significantly different between Salmonella and EHEC (adjusted P ≤ 0.05) with Salmonella D-values ranging from 22.9 ± 2.2 weeks to 25.2 ± 1.0 weeks and EHEC D-values ranging from 11.4 ± 0.6 weeks to 13.1 ± 1.8 weeks. There were no significant differences among the four Salmonella strains or among the six EHEC strains (adjusted P > 0.05). These observations highlight the wide range of survival capabilities of enteric pathogens in a low-moisture environment and confirm these pathogens are a food safety concern when considering the long shelf life of wheat grain and its products.

Download full-text PDF

Source
http://dx.doi.org/10.4315/JFP-21-076DOI Listing

Publication Analysis

Top Keywords

wheat grain
20
enterohemorrhagic escherichia
8
escherichia coli
8
pathogens wheat
8
low-moisture environment
8
enteric pathogens
8
strains serovars
8
serovars salmonella
8
salmonella enteritidis
8
enteritidis agona
8

Similar Publications

A Multiplex High-Resolution Melting (HRM) assay to differentiate Fusarium graminearum chemotypes.

Sci Rep

December 2024

Cereal Disease Laboratory, Agricultural Research Service, US Department of Agriculture, St. Paul, MN, 55108, USA.

Fusarium graminearum is a primary cause of Fusarium head blight (FHB) on wheat and barley. The fungus produces trichothecene mycotoxins that render grain unsuitable for food, feed, or malt. Isolates of F.

View Article and Find Full Text PDF

TabHLH489 suppresses nitrate signaling by inhibiting the function of TaNLP7-3A in wheat.

J Integr Plant Biol

December 2024

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, 266237, China.

Nitrate not only serves as the primary nitrogen source for terrestrial plants but also serves as a critical signal in regulating plant growth and development. Understanding how plant responses to nitrate availability is essential for improving nitrogen use efficiency in crops. Herein, we demonstrated that the basic helix-loop-helix (bHLH) transcription factor TabHLH489 plays a crucial negative regulatory role in wheat nitrate signaling.

View Article and Find Full Text PDF

Meta-QTL mapping for wheat thousand kernel weight.

Front Plant Sci

December 2024

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.

Wheat domestication and subsequent genetic improvement have yielded cultivated species with larger seeds compared to wild ancestors. Increasing thousand kernel weight (TKW) remains a crucial goal in many wheat breeding programs. To identify genomic regions influencing TKW across diverse genetic populations, we performed a comprehensive meta-analysis of quantitative trait loci (MQTL), integrating 993 initial QTL from 120 independent mapping studies over recent decades.

View Article and Find Full Text PDF

Introduction: UV-B can be used as an additional technique for nutrient accumulation in blue-grained wheat, which has special nutritional properties due to its blue starch layer. The concentration of flavonoids in blue-grained wheat under UV-B irradiation is extremely important for further investigation and exploitation of the nutritional properties of blue-grained wheat.

Methods: This investigation focuses on the expression of flavonoids and associated genes in blue-grained wheat using transcriptomic and metabolomic analyzes.

View Article and Find Full Text PDF

The effects of wheat bran dietary fiber (WBDF) treated by air flow micro-pulverization on gelatinization, thermal, rheological, structural properties, and in vitro digestion of wheat starch (WS) were investigated. Different particle sizes of WBDF were obtained by conventional knife grinding and airflow micro-grinding. Compared with conventional knife grinding, the particle size of WBDF treated by air flow micro-pulverization decreased, the particle size distribution was concentrated at small particle sizes, the specific surface area increased, and the hydraulic and oil-holding power decreased, which was mainly related to the change of WBDF spatial structure and the increase of solubility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!