PLoS One
South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Kent, London, United Kingdom.
Published: November 2021
Background: Self-harm occurring within pregnancy and the postnatal year ("perinatal self-harm") is a clinically important yet under-researched topic. Current research likely under-estimates prevalence due to methodological limitations. Electronic healthcare records (EHRs) provide a source of clinically rich data on perinatal self-harm.
Aims: (1) To create a Natural Language Processing (NLP) tool that can, with acceptable precision and recall, identify mentions of acts of perinatal self-harm within EHRs. (2) To use this tool to identify service-users who have self-harmed perinatally, based on their EHRs.
Methods: We used the Clinical Record Interactive Search system to extract de-identified EHRs of secondary mental healthcare service-users at South London and Maudsley NHS Foundation Trust. We developed a tool that applied several layers of linguistic processing based on the spaCy NLP library for Python. We evaluated mention-level performance in the following domains: span, status, temporality and polarity. Evaluation was done against a manually coded reference standard. Mention-level performance was reported as precision, recall, F-score and Cohen's kappa for each domain. Performance was also assessed at 'service-user' level and explored whether a heuristic rule improved this. We report per-class statistics for service-user performance, as well as likelihood ratios and post-test probabilities.
Results: Mention-level performance: micro-averaged F-score, precision and recall for span, polarity and temporality >0.8. Kappa for status 0.68, temporality 0.62, polarity 0.91. Service-user level performance with heuristic: F-score, precision, recall of minority class 0.69, macro-averaged F-score 0.81, positive LR 9.4 (4.8-19), post-test probability 69.0% (53-82%). Considering the task difficulty, the tool performs well, although temporality was the attribute with the lowest level of annotator agreement.
Conclusions: It is feasible to develop an NLP tool that identifies, with acceptable validity, mentions of perinatal self-harm within EHRs, although with limitations regarding temporality. Using a heuristic rule, it can also function at a service-user-level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336818 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253809 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.