Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Perioperative neurocognitive disorder (PND) is a postsurgical complication associated with neuroinflammation and impaired hippocampal neurogenesis, in which brain-derived neurotrophic factor (BDNF) plays a key role. Sarcopenia refers to age-related muscle loss that causes cognitive decline, muscle atrophy, and postoperative delirium. Rats with tail suspension (TS) were used to represent a low-activity model, which involves decreased hind limb function by TS. This hind limb unloading by TS can induce sarcopenia in 2 weeks. However, the relationship between PND and muscle atrophy is unclear. In this experiment, we investigated whether preoperative muscle atrophy induced by TS would affect neurogenesis and accelerate PND in rats.
Methods: Sixty 21-week-old rats were assigned to 4 groups: the TS group, the TS with surgery (TS + S) group, the control group, and the control with surgery (control + S) group. After the abdominal manipulation under 3% sevoflurane anesthesia, cognitive function was assessed using the Morris water maze test and a fear-conditioning test. Neurogenesis was evaluated by checking BDNF secretion and immunohistochemical staining in the hippocampus.
Results: The TS + S group showed impaired swimming latency (difference of means = 12.4 versus control + S; 95% confidence interval [CI], 2.0-22.7; P = .016) (difference of means = 15.2 versus TS; 95% CI, 0.4-30.1; P = .043) and path length (difference of means = 147.8 versus control + S; 95% CI, 20.7-274.9; P = .020) in the maze test and cued fear memory (difference of means = -26.0 versus TS; 95% CI, -46.4 to -5.6; P = .006) (difference of means = -22.3 versus control + S; 95% CI, -42.7 to -1.9; P = .026) in the fear-conditioning test. The postoperative levels of BDNF in the TS + S and TS groups were reduced compared with the other groups (P = .002). The number of neural precursors in the dentate gyrus was significantly lower in the TS + S group (P < .001).
Conclusions: We observed that preoperative hind limb muscle atrophy, indicated by TS, was associated with an increased occurrence of PND through the reduction in BDNF and neurogenesis after abdominal surgery in young adult rats. Therefore, we concluded that preoperative low skeletal muscle mass can induce PND due to impaired postoperative neurogenesis. Our findings might indicate that low-cost perioperative interventions, such as preoperative exercise, is beneficial to preventing PND.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1213/ANE.0000000000005681 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!