Early diagnosis of neurodegenerative disorders, such as Alzheimer's Disease (AD), is very important to reduce their effects and to improve both quality and life expectancy of patients. In this context, it is generally agreed that handwriting is one of the first skills altered by the onset of AD. For this reason, the analysis of handwriting and the study of its alterations has become of great interest in order to formulate the diagnosis as soon as possible. A fundamental aspect for the use of these techniques is the definition of effective features, which allows the system to distinguish the natural alterations of handwriting due to age, from those caused by neurodegenerative disorders. Starting from these considerations, the aim of our study is to verify whether the combined use of both shape and dynamic features allows a decision support system to improve performance for AD diagnosis. To this purpose, starting from a database of on-line handwriting samples, we generated for each of them an off-line synthetic color image, where the color of each elementary trait encodes, in the three RGB channels, the dynamic information associated with that trait. To verify the role played by dynamic information, we also generated simple binary images, containing only shape information. Finally, we exploited the ability of Convolutional Neural Network (CNN) to automatically extract features on both color and binary images. The experimental results have confirmed that dynamic information allows a performance improvement with respect to the binary images.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2021.3101982 | DOI Listing |
Phys Eng Sci Med
January 2025
Institute of Digital Technologies for Personalized Healthcare (MeDiTech), University of Applied Sciences and Arts of Southern Switzerland, Via Pobiette, Manno, 6928, Manno, Switzerland.
The analysis of repetitive hand movements and behavioral transition patterns holds particular significance in detecting atypical behaviors in early child development. Early recognition of these behaviors holds immense promise for timely interventions, which can profoundly impact a child's well-being and future prospects. However, the scarcity of specialized medical professionals and limited facilities has made detecting these behaviors and unique patterns challenging using traditional manual methods.
View Article and Find Full Text PDFRadiology
January 2025
From the Institute of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany.
Background Studies have explored the application of multimodal large language models (LLMs) in radiologic differential diagnosis. Yet, how different multimodal input combinations affect diagnostic performance is not well understood. Purpose To evaluate the impact of varying multimodal input elements on the accuracy of OpenAI's GPT-4 with vision (GPT-4V)-based brain MRI differential diagnosis.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India.
Golgi apparatus (GA) and endoplasmic reticulum (ER) are two of the interesting subcellular organelles that are critical for protein synthesis, folding, processing, post-translational modifications, and secretion. Consequently, dysregulation in GA and ER and cross-talk between them are implicated in numerous diseases including cancer. As a result, simultaneous visualization of the GA and ER in cancer cells is extremely crucial for developing cancer therapeutics.
View Article and Find Full Text PDFData Brief
February 2025
Tecnológico Nacional de México/Instituto Tecnológico de Culiacán, División de Estudios de Posgrado e Investigación, Juan de Dios Batíz 310. Col. Guadalupe, 80220 Culiacán, Sinaloa, Mexico.
A dataset of aerial photographs acquired with an Unmanned Aerial Vehicle (UAV) DJI Phantom 4 Pro is presented for monitoring a cherry tomato ( var. ) crop in Navolato, Mexico. Seven photogrammetric flights were carried out to assess the plant growth using a Mapir Survey 3W multispectral camera.
View Article and Find Full Text PDFBMC Public Health
January 2025
Department of Pathology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
Study Objectives: This study aimed to identify the risk factors associated with falls in hospitalized patients, develop a predictive risk model using machine learning algorithms, and evaluate the validity of the model's predictions.
Study Design: A cross-sectional design was employed using data from the DRYAD public database.
Research Methods: The study utilized data from the Fukushima Medical University Hospital Cohort Study, obtained from the DRYAD public database.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!