β-Hydroxy-α-amino acids are useful compounds for pharmaceutical development. Enzymatic synthesis of β-hydroxy-α-amino acids has attracted considerable interest as a selective, sustainable, and environmentally benign process. In this study, we identified a novel amino acid hydroxylase, AEP14369, from Sulfobacillus thermotolerans Y0017, which is included in a previously constructed CAS-like superfamily protein library, to widen the variety of amino acid hydroxylases. The detailed structures determined by nuclear magnetic resonance and X-ray crystallography analysis of the enzymatically produced compounds revealed that AEP14369 catalyzed -β-selective hydroxylation of l-His and l-Gln in a 2-oxoglutarate-dependent manner. Furthermore, the production of l--β-hydroxy-His and l--β-hydroxy-Gln was achieved using Escherichia coli expressing the gene encoding AEP14369 as a whole-cell biocatalyst. Under optimized reaction conditions, 137 mM (23.4 g liter) l--β-hydroxy-His and 150 mM l--β-hydroxy-Gln (24.3 g liter) were obtained, indicating that the enzyme is applicable for preparative-scale production. AEP14369, an l-His/l-Gln -β-hydroxylase, increases the availability of 2-oxoglutarate-dependent hydroxylase and opens the way for the practical production of β-hydroxy-α-amino acids in the future. The amino acids produced in this study would also contribute to the structural diversification of pharmaceuticals that affect important bioactivities. Owing to an increasing concern for sustainability, enzymatic approaches for producing industrially useful compounds have attracted considerable attention as a powerful complement to chemical synthesis for environment-friendly synthesis. In this study, we developed a bioproduction method for β-hydroxy-α-amino acid synthesis using a newly discovered enzyme. AEP14369 from the moderate thermophilic bacterium Sulfobacillus thermotolerans Y0017 catalyzed the hydroxylation of l-His and l-Gln in a regioselective and stereoselective fashion. Furthermore, we biotechnologically synthesized both l--β-hydroxy-His and l--β-hydroxy-Gln with a titer of over 20 g liter through whole-cell bioconversion using recombinant Escherichia coli cells. As β-hydroxy-α-amino acids are important compounds for pharmaceutical development, this achievement would facilitate future sustainable and economical industrial applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8478450PMC
http://dx.doi.org/10.1128/AEM.01335-21DOI Listing

Publication Analysis

Top Keywords

β-hydroxy-α-amino acids
16
sulfobacillus thermotolerans
12
enzymatic synthesis
8
2-oxoglutarate-dependent hydroxylase
8
acids compounds
8
compounds pharmaceutical
8
pharmaceutical development
8
attracted considerable
8
amino acid
8
thermotolerans y0017
8

Similar Publications

Demands for animal products are projected to increase in the future, and animal production is key to agricultural sustainability and food security; consequently, enhancing ruminant livestock production efficiencies in sustainable ways is a major goal for the livestock industry. Developmental programming is the concept that various stressors, including compromised maternal nutrition during critical developmental windows will result in both short- and long-term changes in the offspring. Ruminant models of developmental programming indicate that compromised maternal nutrition, including global under and over-nutrition, macronutrients, and specific micronutrients, including amino acids (Met and Arg), vitamins (folate, B, and choline), and minerals (sulfur, cobalt, and selenium) can alter offspring outcomes.

View Article and Find Full Text PDF

Background & Aims: Considerable interest has been recently given to the potential role of the gut-brain axis (GBA) -a two-way communication network between the gut microbiota and the central nervous system- in the pathogenesis of attention-deficit hyperactivity disorder (ADHD), suggesting the potential usefulness of probiotic and synbiotic supplementations. In light of the limited available evidence, synbiotic efficacy in ADHD children not taking medications should be clarified. This study aimed to investigate the efficacy of a synbiotic dietary supplementation on fatty acids levels as well as on microbiota composition, behaviour, cognition, and brain function in children with ADHD.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease. The present work aimed to explore the function of regulator of Calcineurin 2 (RCAN2) in NAFLD and its related mechanisms. Mice were fed with high-fat diet (HFD) to construct NAFLD model.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a chronic inflammatory bowel disease initially treated with mesalazine (5-ASA). However, its effectiveness is limited by rapid absorption, low colonic concentration, and exacerbation of dysbiosis. Probiotics can mitigate dysbiosis if they survive the acidic conditions of the stomach.

View Article and Find Full Text PDF

Bile acids (BAs), not only promote the absorption of fat-soluble nutrients and regulate the metabolism of multiple substances but also have a potential role as diagnostic and prognostic indicators in a variety of diseases such as cholestasis, hepatocellular carcinoma, and diabetes mellitus. Here, a rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous quantification of 50 BAs was developed and validated. Sample preparation included internal standard spiking, followed by protein precipitation, centrifugation, solvent evaporation, and reconstitution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!