Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transgenic rice cells (Oryza sativa) producing recombinant butyrylcholinesterase (BChE) as a prophylactic/therapeutic against organophosphate nerve agent poisoning, cocaine toxicity, and neurodegenerative diseases like Alzheimer's were immobilized in a polyethylene glycol-based hydrogel. The cells were sustained for 14 days in the semi-solid matrix, undergoing a growth phase from days 0-6, a BChE production phase in sugar-free medium from days 6-12, and a growth/recovery phase from days 12-14. Throughout this period, the cells maintained similar viability to those in suspension cultures and displayed analogous sugar consumption trends. The rice cells in the hydrogel also produced a significant amount of active BChE, comparable to the levels produced in liquid cultures. A considerable fraction of this BChE was secreted into the media, allowing for easier product separation. To the best of our knowledge, this proof-of-concept is the first report of immobilization of recombinant plant cells for continuous production of high-value heterologous proteins. This work serves as a foundation for further investigation towards plant cell bioprinting and the development of a simple, efficient, robust, modular, and potentially field-deployable bioreactor system for the manufacture of biologics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biot.202100133 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!