In the past decade, advances in genome sequencing have allowed researchers to uncover the history of hybridization in diverse groups of species, including our own. Although the field has made impressive progress in documenting the extent of natural hybridization, both historical and recent, there are still many unanswered questions about its genetic and evolutionary consequences. Recent work has suggested that the outcomes of hybridization in the genome may be in part predictable, but many open questions about the nature of selection on hybrids and the biological variables that shape such selection have hampered progress in this area. We synthesize what is known about the mechanisms that drive changes in ancestry in the genome after hybridization, highlight major unresolved questions, and discuss their implications for the predictability of genome evolution after hybridization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8337078PMC
http://dx.doi.org/10.7554/eLife.69016DOI Listing

Publication Analysis

Top Keywords

hybridization
6
genomic consequences
4
consequences hybridization
4
hybridization decade
4
decade advances
4
genome
4
advances genome
4
genome sequencing
4
sequencing allowed
4
allowed researchers
4

Similar Publications

Deep learning has emerged as a powerful tool in medical imaging, particularly for corneal topographic map classification. However, the scarcity of labeled data poses a significant challenge to achieving robust performance. This study investigates the impact of various data augmentation strategies on enhancing the performance of a customized convolutional neural network model for corneal topographic map classification.

View Article and Find Full Text PDF

Background: Telehomecare monitoring (TM) in patients with cancer is a complex intervention. Research shows variations in the benefits and challenges TM brings to equitable access to care, the therapeutic relationship, self-management, and practice transformation. Further investigation into these variations factors will improve implementation processes and produce effective outcomes.

View Article and Find Full Text PDF

Background: Accurate differentiation between benign and malignant pancreatic lesions is critical for effective patient management. This study aimed to develop and validate a novel deep learning network using baseline computed tomography (CT) images to predict the classification of pancreatic lesions.

Methods: This retrospective study included 864 patients (422 men, 442 women) with confirmed histopathological results across three medical centers, forming a training cohort, internal testing cohort, and external validation cohort.

View Article and Find Full Text PDF

Waxy maize is highly preferred diet in developing countries due to its high amylopectin content. Enriching amylopectin in biofortified maize meets food security and fulfils the demand of rising industrial applications, especially bioethanol. The mutant waxy1 (wx1) gene is responsible for increased amylopectin in maize starch, with a wide range of food and industrial applications.

View Article and Find Full Text PDF

Introduction: Breath Volatile organic compounds (VOCs) are promising biomarkers for clinical purposes due to their unique properties. Translation of VOC biomarkers into the clinic depends on identification and validation: a challenge requiring collaboration, well-established protocols, and cross-comparison of data. Previously, we developed a breath collection and analysis method, resulting in 148 breath-borne VOCs identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!