Aspergillus oryzae is a safe filamentous fungus widely used in the food, medicine, and feed industries, but there is currently not enough research on the light response of A. oryzae. In this study, 12 different light conditions were set and A. oryzae GDMCC 3.31 was continuously irradiated for 72 h to investigate the effect of light on mycelial growth and conidium production. Specifically, each light condition was the combination of one light wavelength (475, 520, or 630 nm) and one light intensity (20, 40, 60, or 80 μmol photon m s). The results show that mycelium growth was inhibited significantly by green light (wavelength of 520 nm and intensities of 20 and 60 μmol photon m s) and blue light (wavelength of 475 nm and intensity of 80 μmol photon m s). The production of conidia was suppressed only by blue light (wavelength of 475 nm and intensities of 40, 60, and 80 μmol photon m s), and those levels of inhibition increased when the intensity of blue light increased. When the strain was irradiated by blue light (80 μmol photon m s), the number of conidia was 57.4% less than that of the darkness group. However, within our set range of light intensities, A. oryzae GDMCC 3.31 was insensitive to red light (wavelength of 630 nm) in terms of mycelium growth and conidium production. Moreover, interaction effects between light wavelength and intensity were found to exist in terms of colony diameter and the number of conidia. This research investigated the light response of A. oryzae, which may provide a new method to regulate mixed strains in fermented foods by light. Studies on the monochromatic light response of Aspergillus nidulans and Neurospora crassa have gone deep into the molecular mechanism. However, research methods for the light response of A. oryzae remain in the use of white light sources. In this study, we first demonstrated that A. oryzae GDMCC 3.31 was sensitive to light wavelength and intensity. We have observed that blue light inhibited its growth and sporulation and the inhibitory effect increased with intensity. This research not only adds new content to the study of the photoreaction of Aspergillus but also brings new possibilities for the use of light to regulate mixed strains and ultimately improve the flavor quality of fermented foods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552791PMC
http://dx.doi.org/10.1128/Spectrum.00213-21DOI Listing

Publication Analysis

Top Keywords

light wavelength
28
light
23
blue light
20
light response
16
80 μmol photon
16
mycelium growth
12
growth conidium
12
conidium production
12
response oryzae
12
oryzae gdmcc
12

Similar Publications

High-Q Emission from Colloidal Quantum Dots Embedded in Polymer Quasi-BIC Metasurfaces.

Nano Lett

January 2025

Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Metasurfaces supporting narrowband resonances are of significant interest in photonics for molecular sensing, quantum light source engineering, and nonlinear photonics. However, many device architectures rely on large refractive index dielectric materials and lengthy fabrication processes. In this work, we demonstrate quasi-bound states in the continuum (quasi-BICs) using a polymer metasurface exhibiting experimental quality factors of 305 at visible wavelengths.

View Article and Find Full Text PDF

Engineering Floquet Moiré Patterns for Scalable Photocurrents.

Nano Lett

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), X5000HUA Córdoba, Argentina.

While intense laser irradiation and moiré engineering have independently proven powerful for tuning material properties on demand in condensed matter physics, their combination remains unexplored. Here we exploit tilted laser illumination to create spatially modulated light-matter interactions, leading to two striking phenomena in graphene. First, using two lasers tilted along the same axis, we create a quasi-1D supercell hosting a network of Floquet topological states that generate controllable and scalable photocurrents spanning the entire irradiated region.

View Article and Find Full Text PDF

A SPR aptamer sensor for mercury based on AuNPs@NaYF:Yb,Tm,Gd upconversion luminescent nanoparticles.

Anal Methods

November 2017

Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.

A new aptamer-based surface plasmon resonance (SPR) system has been designed to detect Hg that utilizes near-infrared (NIR)-to-NIR gold nanoparticle coated NaYF:Yb,Tm,Gd up-conversion nanoparticles (AuNPs@NaYF:Yb,Tm,Gd UCNPs) as probes. The AuNPs@NaYF:Yb,Tm,Gd UCNPs were prepared and excited by near-infrared light (980 nm) which emitted at a near-infrared wavelength (808 nm) using an inexpensive infrared continuous wave laser diode. The AuNPs@NaYF:Yb,Tm,Gd UCNPs were conjugated with Hg aptamers.

View Article and Find Full Text PDF

Measurement and Analysis of Optical Transmission Characteristics of the Human Skull.

J Biophotonics

January 2025

Department of Emergency, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.

The brain, as a vital part of central nervous system, receives approximately 25% of body's blood supply, making accurate monitoring of cerebral blood flow essential. While fNIRS is widely used for measuring brain physiology, complex tissue structure affects light intensity, spot size, and detection accuracy. Many studies rely on simulations with limited experimental validation.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) are highly valued for their chemical stability, tunable size, and biocompatibility. Utilizing green chemistry, a microwave-assisted synthesis method was employed to produce water-soluble GQDs from Mangifera Indica leaf extract. This approach is efficient, cost-effective, and environmentally friendly, offering reduced reaction times, energy consumption, and uniform particle sizes, and has proven advantageous over other methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!