Dynamic Constitutional Frameworks as Antibacterial and Antibiofilm Agents.

Angew Chem Int Ed Engl

Faculty of Science, University of Namur, Rue de Bruxelles, 61, Namur, Belgium.

Published: October 2021

Dynamic constitutional frameworks (DCFs) were synthesized and screened for biofilm inhibition or disruption. They are composed of a trialdehyde core reversibly linked to a diamine PEG connector and to a variety of neutral, anionic, or cationic heads, to generate a library of DCFs to generate multivalent dendritic architectures in the presence of Pseudomonas aeruginosa and Staphylococcus aureus. The best DCFs were always polycationic and the nature of the cationic heads significantly impact the antibiofilm activity. The best antibiofilm activity was observed for DCF3B, displaying a polyethyleneimine head. A simple inactive guanidinium functional head strongly inhibited biofilm growth when assayed as a multivalent DCF3C. Using a more advanced in vitro biofilm model of chronic wound infection, DCF3C was found significantly superior than all other DCFs. These results demonstrate the versatility and effectiveness of DCFs as low cost and efficient systems for antibiofilm disruption.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202109518DOI Listing

Publication Analysis

Top Keywords

dynamic constitutional
8
constitutional frameworks
8
cationic heads
8
antibiofilm activity
8
dcfs
5
frameworks antibacterial
4
antibiofilm
4
antibacterial antibiofilm
4
antibiofilm agents
4
agents dynamic
4

Similar Publications

Phosphorothioate (PS) modifications in single-guided RNA (sgRNA) are crucial for genome editing applications using the CRISPR/Cas9 system. These modifications may enhance sgRNA stability, pharmacokinetics, and binding to targets, thereby facilitating the desired genetic alterations. Incorporating multiple PS groups at varying positions may introduce chiral centers into the sgRNA backbone, resulting in a complex mixture of constitutional- and stereoisomers that challenges current analytical capabilities for reliable identification and quantification.

View Article and Find Full Text PDF

Beetles that feed on the nutritionally depauperate and recalcitrant tissues provided by the leaves, stems, and roots of living plants comprise one-quarter of herbivorous insect species. Among the key adaptations for herbivory are plant cell wall-degrading enzymes (PCWDEs) that break down the fastidious polymers in the cell wall and grant access to the nutritious cell content. While largely absent from the non-herbivorous ancestors of beetles, such PCWDEs were occasionally acquired via horizontal gene transfer (HGT) or by the uptake of digestive symbionts.

View Article and Find Full Text PDF

Background: The individualized prediction and discrimination of precancerous lesions of gastric cancer (PLGC) is critical for the early prevention of gastric cancer (GC). However, accurate non-invasive methods for distinguishing between PLGC and GC are currently lacking. This study therefore aimed to develop a risk prediction model by machine learning and deep learning techniques to aid the early diagnosis of GC.

View Article and Find Full Text PDF

A method to photomodulate dynamically transient DNA-based reaction circuits and networks is introduced. The method relies on the integration of photoresponsive o-nitrobenzyl-phosphate ester-caged DNA hairpin with a "mute" reaction module. Photodeprotection (λ=365 nm) of the hairpin structure separates a fuel strand triggering the dynamic, transient, operation of the DNA circuit/network.

View Article and Find Full Text PDF
Article Synopsis
  • Tumor-associated macrophages (TAMs) play a significant role in cancer progression, but the impact of liver macrophages (Kupffer cells or KCs) on hepatocellular carcinoma (HCC) is not well understood.
  • This study uncovers how exosomes from HCC cells convert KCs into TAMs via an IL6-JAK1-ACAP4 signaling pathway, enhancing HCC metastasis.
  • The research also highlights bufalin, a compound that inhibits JAK1, preventing the phosphorylation of ACAP4 and potentially reducing HCC cell migration and metastasis, suggesting its therapeutic promise.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!