In Hydra, Notch inhibition causes defects in head patterning and prevents differentiation of proliferating nematocyte progenitor cells into mature nematocytes. To understand the molecular mechanisms by which the Notch pathway regulates these processes, we performed RNA-seq and identified genes that are differentially regulated in response to 48 h of treating the animals with the Notch inhibitor DAPT. To identify candidate direct regulators of Notch signalling, we profiled gene expression changes that occur during subsequent restoration of Notch activity and performed promoter analyses to identify RBPJ transcription factor-binding sites in the regulatory regions of Notch-responsive genes. Interrogating the available single-cell sequencing data set revealed the gene expression patterns of Notch-regulated Hydra genes. Through these analyses, a comprehensive picture of the molecular pathways regulated by Notch signalling in head patterning and in interstitial cell differentiation in Hydra emerged. As prime candidates for direct Notch target genes, in addition to Hydra (Hy)Hes, we suggest Sp5 and HyAlx. They rapidly recovered their expression levels after DAPT removal and possess Notch-responsive RBPJ transcription factor-binding sites in their regulatory regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8353520 | PMC |
http://dx.doi.org/10.1242/jcs.258768 | DOI Listing |
Nanoscale Adv
December 2024
Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven West Haven CT 06516 USA
Mesenchymal stem cell (MSC)-based bone tissue regeneration has gained significant attention due to the excellent differentiation capacity and immunomodulatory activity of MSCs. Enhancing osteogenesis regulation is crucial for improving the therapeutic efficacy of MSC-based regeneration. By utilizing the regenerative capacity of bone ECM and the functionality of nanoparticles, we recently engineered bone-based nanoparticles (BNPs) from decellularized porcine bones.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Developmental Biology and Genetics, Indian Institute of Science (IISc), Bangalore, India.
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling pathway is a key player in animal development and physiology. Although it functions in a variety of processes, the net output of JAK-STAT signalling depends on its spatiotemporal activation, as well as extensive crosstalk with other signalling pathways. Drosophila, with its relatively simple signal transduction pathways and plethora of genetic analysis tools, is an ideal system for dissecting JAK-STAT signalling interactions.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
Cell communication and competition pathways are malleable to Myocardial Infarction (MI). Key signals, transcriptive regulators, and metabolites associated with apoptotic responses such as Myc, mTOR, and p53 are important players in the myocardium. The individual state of cardiomyocytes, fibroblasts, and macrophages in the heart tissue are adaptable in times of stress.
View Article and Find Full Text PDFArthroscopy is a minimally invasive surgical procedure used to diagnose and treat joint problems. The clinical workflow of arthroscopy typically involves inserting an arthroscope into the joint through a small incision, during which surgeons navigate and operate largely by relying on their visual assessment through the arthroscope. However, the arthroscope's restricted field of view and lack of depth perception pose challenges in navigating complex articular structures and achieving surgical precision during procedures.
View Article and Find Full Text PDFInt Endod J
January 2025
School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China.
Aim: Effective control of mesenchymal stem cell (MSC) differentiation towards osteogenic lineages is fundamental for bone regeneration. This study elucidates the regulatory role of methyltransferase like 7A (METTL7A) in the osteogenic differentiation of MSCs.
Methodology: Alkaline phosphatase staining, Alizarin Red S staining, western blotting, and in vivo studies were conducted to determine the effects of METTL7A depletion or overexpression on the osteogenic differentiation of various types of MSCs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!