Scaffold-free generation of heterotypic cell spheroids using acoustofluidics.

Lab Chip

Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China.

Published: September 2021

3D cell cultures such as cell spheroids are widely used for tissue engineering, regenerative medicine, and translational medicine, but challenges remain in recapitulating the architectural complexity and spatiotemporal heterogeneity of tissues. Thus, we developed a scaffold-free and versatile acoustofluidic device to fabricate heterotypic cell spheroids with complexity over cell architectures and components. By varying the concentrations of cell suspension, we can precisely control the size of spheroids aggregated by a contact-free acoustic radiation force. By tuning the cell components including tumor cells, fibroblasts, and endothelial cells, heterotypic spheroids were controllably fabricated. These heterotypic spheroids can be used as a proof-of concept to model the spatial organization of tumor tissues. We demonstrated that the assembled components can self-assemble into layered structures as instructed by their cadherin expression. Finally, we demonstrated the acoustic assembly of mouse mammary gland components into spheroids and observed their maturation in culture. To conclude, we developed an acoustofluidic platform to fabricate complex spheroids with multiple components. We envision that this platform will pave the way for the high accuracy of spheroid fabrication and offer broad applications in numerous areas, such as tumor research, tissue engineering, developmental biology, and drug discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1lc00496dDOI Listing

Publication Analysis

Top Keywords

cell spheroids
12
heterotypic cell
8
spheroids
8
tissue engineering
8
heterotypic spheroids
8
cell
7
components
5
scaffold-free generation
4
heterotypic
4
generation heterotypic
4

Similar Publications

Red blood cells (RBCs) serve as natural transporters and can be modified to enhance the pharmacokinetics and pharmacodynamics of a protein cargo. Affinity targeting of Factor IX (FIX) to the RBC membrane is a promising approach to improve the (pro)enzyme's pharmacokinetics. For RBC targeting, purified human FIX was conjugated to the anti-mouse glycophorin A monoclonal antibody Ter119.

View Article and Find Full Text PDF

Unlabelled: Metabolic syndrome and excessive alcohol consumption result in liver injury and fibrosis, which is characterized by increased collagen production by activated Hepatic Stellate Cells (HSCs). LARP6, an RNA-binding protein, was shown to facilitate collagen production. However, LARP6 expression and functionality as a regulator of fibrosis development in a disease relevant model remains elusive.

View Article and Find Full Text PDF

Augmented extracellular matrix (ECM) stiffness is a mechanical hallmark of cancer. Mechanotransduction studies have extensively probed the mechanisms by which ECM stiffness regulates intracellular communication. However, the influence of stiffness on intercellular communication aiding tumor progression in three-dimensional microenvironments remains unknown.

View Article and Find Full Text PDF

Genes and proteins expression profile of 2D vs 3D cancer models: a comparative analysis for better tumor insights.

Cytotechnology

April 2025

University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413 India.

When juxtaposed with 2D cell culture models, multicellular tumor spheroids demonstrate a capacity to faithfully replicate certain features inherent to solid tumors. These include spatial architecture, physiological responses, the release of soluble mediators, patterns of gene expression, and mechanisms of drug resistance. The morphological and behavioural similarities between 3D-cultured cells and cells within tumor masses highlight the potential of these models in studying cancer biology and drug responses.

View Article and Find Full Text PDF

Enzyme-instructed self-assembly (EISA) is a promising approach to anti-cancer therapeutics due to its precise targeting and unique cell death mechanism. In this study, we introduce a small molecule, DN6, which undergoes nitroreductase (NTR)-responsive liquid-liquid phase separation (LLPS) followed by a liquid-to-solid phase transition (LST) through a gel-like intermediate state, resulting in the formation of nanoaggregates with spatiotemporal control. The reduced form of DN6 (DN6R), owing to its aggregation-induced emission (AIE) and mitochondria-targeting capabilities, has been employed for organelle-specific imaging of tumor hypoxia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!