Halogen bond-induced electrophilic aromatic halogenations.

Org Biomol Chem

Mahidol University International College, Mahidol University, Salaya, Nakorn Pathom 73170, Thailand.

Published: September 2021

AI Article Synopsis

Article Abstract

In recent years, there has been increasing interest in utilising halogen bonds in organic synthesis, especially in aromatic halogenation reactions. -Halosuccinimides and 1,3-dihalo-5,5-dimethylhydantoins are popular sources of halonium ions due to their ease of handling and low toxicities. Traditionally, these -haloimides are activated by electrophiles, namely Brønsted and Lewis acids. The recent discovery of possible activation by nucleophilic Lewis base catalysts led to a paradigm shift in aromatic halogenation. Active functional motifs in Lewis base catalysts such as CS, R-S-R, Ar-S-S-Ar, SO, Ar-NH, and RNHCl form halogen bonds with the positively charged σ-hole of the halogen atoms: an essential interaction to produce halonium ions. This review highlights the evolution of the two modes of activation. Evidence of halogen bond formation from mechanistic studies of nucleophilic activation is also discussed herein.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1ob00936bDOI Listing

Publication Analysis

Top Keywords

halogen bonds
8
aromatic halogenation
8
halonium ions
8
lewis base
8
base catalysts
8
halogen
5
halogen bond-induced
4
bond-induced electrophilic
4
electrophilic aromatic
4
aromatic halogenations
4

Similar Publications

Single-atom catalysts (SACs) with high metal loadings are highly desirable but still challenging for large scale synthesis. Here we report a new technique named as dry-solid-electrochemical synthesis (DSES) for a general large-scale synthesis of SACs with high metal loadings in an energy-conservation and environment-friendly way. With it, a series of pure carbon-supported metal SACs (Platinum up to 35.

View Article and Find Full Text PDF

This work combines halogen and chalcogen bonding. Short, polarity directed C-X⋅⋅⋅Ch (X = Br or I, Ch = Se or Te) contacts were prepared by in situ low-temperature cocrystallization of liquid mixtures of neutral pentafluorohalogenobenzenes C6F5X and dimethyl chalco-genides Me2Ch. Solid-state structures of Me2Se and Me2Te were determined 150 and 125 years after their first description.

View Article and Find Full Text PDF

Upgrade of Weak σ-hole Bond Donors via Cr(CO)3 Complexation.

Chemistry

January 2025

Politecnico di Milano, Department of Chemistry, Materials, Chemical Engineer., via Mancinelli 7, 20131, Milan, ITALY.

Molecular recognition mediated by s-hole interactions is enhanced as the electrostatic potential at the σ-hole becomes increasingly positive. Traditional methods to strengthen σ-hole donor ability of atoms such as halogens often involve covalent modifications, such as, introducing electron-withdrawing substituents (neutral or positively charged) or electrochemical oxidation. Metal coordination, a relatively underexplored approach, offers a promising alternative.

View Article and Find Full Text PDF

Polarization Upends Convention: Halogen Bonding Propensities of Main Group Halides.

J Phys Chem A

January 2025

Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States.

The propensities for sigma hole bonding by halogen atoms bonded to central atoms below period 2 in the periodic table remain to be systematically examined. Using iodine as our reference halogen atom, a comprehensive analysis of the tendencies for halogen and other forms of significant sigma hole bonding by simple compounds of main group atoms from H to At is accomplished. An examination of the structure and bonding of complexes formed by those iodine-substituted main group compounds and sigma donating bases (ammonia and trimethylamine) is performed to probe the viability of halogen bonding by heavy main group RM-I compounds in particular, given the historic focus on period 2.

View Article and Find Full Text PDF

Exploring the bonding in alkaline earth halides AeX (Ae = Be-Ba, X = F-I) from Fermi hole localization and QTAIM perspectives.

Phys Chem Chem Phys

January 2025

Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 17-1200-841, Ecuador.

A theoretical description of various [AeX] (Ae = Be-Ba, X = F-I) systems, some of which have been reported in the literature to bear an unusual quadruple bond between the metal and the halogen, is provided based on both (i) the localization of the Fermi hole and (ii) the topological analysis of the one-electron density. Insights into the bond order of various [AeX] systems are inferred on the basis of the number of electrons localized in the bond basin, the topology of the Fermi hole information computed along the bond axis, and the delocalization index. The results suggest that the [AeX] molecules present a bond with attributes closer to a classical dative bond than to a multiple one, being characterized by large stabilization due to the electrostatic interaction between the polarized metal and the halogen anion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!