The ubiquitous presence of microplastics as contaminants in the ecosystem has become a matter of environmental concern gaining considerable attention in the research community as well as public arena. Lack of efficient collection and improper management of plastic have resulted in the enormous amounts of plastic wastes landing into the marine systems with oceans being the ultimate sink. Due to non-biodegradability, these plastics break down into smaller fragments over a period of time leading to consumption by aquatic species, threatening marine life. In the recent years, a wide range of food products has also been contaminated with microplastics directly affecting human health. This review focuses on the separation and identification technologies for extraction and detection of microplastics in food and marine ecosystems. Efficient technologies like floatation, membrane separation, chemical treatment, enzymatic treatment, and other miscellaneous techniques have been discussed considering their merits and demerits. Additionally, identification technologies like optical detection, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, thermo-analytical methods, and hyperspectral imaging have been emphasized for the detection of microplastic particles. The emerging techniques like enzymatic digestion combined with hyperspectral imaging could be a possible way for obtaining higher separation efficiency and characterization with minimal harm to food sample. This article narrows the gap for choosing a standard separation technology for microplastic detection in food matrices keeping in mind the composition, particle size, shape, data visualization techniques and cost.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.131653 | DOI Listing |
J Med Internet Res
January 2025
Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, United Arab Emirates.
Background: Neuroimaging segmentation is increasingly important for diagnosing and planning treatments for neurological diseases. Manual segmentation is time-consuming, apart from being prone to human error and variability. Transformers are a promising deep learning approach for automated medical image segmentation.
View Article and Find Full Text PDFBraz J Biol
January 2025
Near East University, Operational Research Center in Healthcare, Mersin, Turkey.
Amidst the ongoing COVID-19 pandemic, the imperative of our time resides in crafting stratagems of utmost precision to confront the relentless SARS-CoV-2 and quell its inexorable proliferation. A paradigm-shifting weapon in this battle lies in the realm of nanoparticles, where the amalgamation of cutting-edge nanochemistry begets a cornucopia of inventive techniques and methodologies designed to thwart the advances of this pernicious pathogen. Nanochemistry, an artful fusion of chemistry and nanoscience, provides a fertile landscape for researchers to craft innovative shields against infection.
View Article and Find Full Text PDFAnal Chem
January 2025
Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
Droplet-based microfluidics is a powerful tool for high-throughput analysis of liquid samples with significant applications in biomedicine and biochemistry. Nevertheless, extracting content-rich information from single picolitre-sized droplets at high throughputs remains challenging due to the weak signals associated with these small volumes. Overcoming this limitation would be transformative for fields that rely on high-throughput screening, enabling broader multiparametric analysis.
View Article and Find Full Text PDFSci Adv
January 2025
Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan.
Multimodal sensing using soft body dynamics plays a crucial role in controlling soft robotic motions. An intriguing application of such soft robot control is to mimic whiskers and digitize soft body motion through whisker dynamics. The challenge herein is to simultaneously monitor the directions, speed, force, and slip information of the whisker motion.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, United States.
This study evaluated a novel ex situ passive sampling biomimetic extraction (BE) method to estimate toxic potency in sediments. Gas chromatography with flame ionization detection (GC-FID) analysis of polydimethylsiloxane fibers equilibrated with field sediments was used to quantify bioavailable polyaromatic hydrocarbons (PAHs) and other unresolved, site-specific contaminant mixtures. This method is biomimetic because contaminants partition to the fiber based on hydrophobicity and abundance, and GC-FID quantification accounts for all constituents absorbed to the fiber that may contribute to toxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!