A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of different direct revegetation strategies on the mobility of heavy metals in artificial zinc smelting waste slag: Implications for phytoremediation. | LitMetric

Effect of different direct revegetation strategies on the mobility of heavy metals in artificial zinc smelting waste slag: Implications for phytoremediation.

Chemosphere

College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China. Electronic address:

Published: January 2022

The establishment of vegetation cover is an important strategy to reduce wind and water erosion at metal smelting waste slag sites. However, the mobility of heavy metals in waste slag-vegetation-leachate systems after the application of revegetation strategies is still unclear. Large microcosm experiments were conducted for revegetation of waste slag for 98 d using combined amendments, i.e., phosphate rock and an organic waste coming from the anaerobic digestion of pig manure (named as biogas residue), and by single- and co-planted perennial ryegrass (Lolium perenne L.) and Trifolium repens (T. repens). The results showed that the application of biogas residue slightly increased the concentrations of Zn and Cd in the leachates; however, the establishment of plants could avoid the excessive leaching of heavy metals coming from the biogas residue. The bioavailability of Cu, Zn, and Cd slightly increased, but Pb bioavailability significantly decreased regardless of single- or co-planting patterns. Additionally, the bioavailability of Cu, Zn, and Cd in the waste slag revegetated with perennial ryegrass was lower than that in T. repens under the single-planting pattern. The change in the heavy metals bioavailability under different revegetation strategies was mainly due to the root-induced change in the pH and speciation of heavy metals in the waste slag. The application of biogas residue and phosphate rock tends to the immobilization of Pb. Heavy metals mainly accumulated in the underground parts of the two herbs, and the heavy metal contents in the underground parts of perennial ryegrass were higher than those in T. repens regardless of single- or co-planting patterns. The heavy metals accumulated in T. repens were lower than those in perennial ryegrass in the single-planting pattern. The bioaccumulation and transportation factors of the two herbs were extremely low. Thus, the two herbs are potential candidates for phytostabilization of zinc smelting waste slag sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.131678DOI Listing

Publication Analysis

Top Keywords

heavy metals
28
waste slag
24
biogas residue
16
perennial ryegrass
16
revegetation strategies
12
smelting waste
12
heavy
8
mobility heavy
8
zinc smelting
8
waste
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!