Introduction: The global pandemic of COVID-19 began in Wuhan, China in December 2019. Research into effective therapies has been conducted worldwide. Currently, there is no antiviral treatment and many patients develop a severe course of the disease, including severe respiratory failure. Due to similar pathomechanisms of inflammation in multiple sclerosis (MS) and COVID-19, immunomodulatory drugs that are registered for the treatment of MS are under study in the SARS-CoV-2 infection in clinical trials.
Materials And Methods: Using clinicaltrials.gov, we found information related to ongoing clinical studies on potential drugs for COVID-19 which are also used in MS therapy. The outcomes of several trials were published on pubmed.ncbi.nlm.nih.gov.
Results: There were 18 clinical trials evaluating the effectiveness and safety of interferon-β, fingolimod, or leflunomide in COVID-19. Some trial outcomes available at pubmed.ncbi.nlm.nih.gov suggested an association of these drug treatments with improvements in signs and symptoms, and the disease course.
Conclusion: The administration of immunomodulatory drugs in COVID-19 may result in potential beneficial effects probably associated with their anti-inflammatory and antiviral properties. Further research is warranted to confirm the long-term effects of immunomodulatory therapies in patients with COVID-19.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5603/PJNNS.a2021.0051 | DOI Listing |
Ann Clin Transl Neurol
January 2025
NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, UK.
Objective: To assess the pathological mechanisms contributing to white matter (WM) lesion expansion or contraction and remyelination in multiple sclerosis (MS).
Methods: We assessed 1,613 lesions in 49 people with relapsing-remitting MS in the CCMR-One bexarotene trial (EudraCT 2014-003145-99). We measured lesion orientation relative to WM tracts, surface-in gradients and veins.
Alzheimers Dement
January 2025
Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, New York, USA.
This proceedings article summarizes the inaugural "T Cells in the Brain" symposium held at Columbia University. Experts gathered to explore the role of T cells in neurodegenerative diseases. Key topics included characterization of antigen-specific immune responses, T cell receptor (TCR) repertoire, microbial etiology in Alzheimer's disease (AD), and microglia-T cell crosstalk, with a focus on how T cells affect neuroinflammation and AD biomarkers like amyloid beta and tau.
View Article and Find Full Text PDFPreviously, our metabolomic, transcriptomic, and genomic studies characterized the ceramide/sphingomyelin pathway as a therapeutic target in Alzheimer's disease, and we demonstrated that FTY720, a sphingosine-1-phospahate receptor modulator approved for treatment of multiple sclerosis, recovers synaptic plasticity and memory in APP/PS1 mice. To further investigate how FTY720 rescues the pathology, we performed metabolomic analysis in brain, plasma, and liver of trained APP/PS1 and wild-type mice. APP/PS1 mice showed area-specific brain disturbances in polyamines, phospholipids, and sphingolipids.
View Article and Find Full Text PDFWe examine disease-specific and cross-disease functions of the human gut microbiome by colonizing germ-free mice, at risk for inflammatory arthritis, colitis, or neuroinflammation, with over 100 human fecal microbiomes from subjects with rheumatoid arthritis, ankylosing spondylitis, multiple sclerosis, ulcerative colitis, Crohn's disease, or colorectal cancer. We find common inflammatory phenotypes driven by microbiomes from individuals with intestinal inflammation or inflammatory arthritis, as well as distinct functions specific to microbiomes from multiple sclerosis patients. Inflammatory disease in mice colonized with human microbiomes correlated with systemic inflammation, measured by C-reactive protein, in the human donors.
View Article and Find Full Text PDFFront Immunol
January 2025
Genentech, Inc., South San Francisco, CA, United States.
Objectives: This case series describes adults with aquaporin 4 immunoglobulin G-seropositive (AQP4-IgG+) neuromyelitis optica spectrum disorder (NMOSD) who switched treatment from eculizumab to satralizumab.
Methods: Case information for patients with AQP4-IgG+ NMOSD who received satralizumab for ≥6 months was obtained from US healthcare providers from April 2022 to January 2024. Patient characteristics, examination findings, diagnostic test results, treatment response, and adverse events were recorded.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!