Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The water quality of the effluents is mainly focused on physicochemical and microbiological parameters. However, the ecotoxicological assessments are crucial to ensure an effective water quality of the effluents. This work aims to assess the ecotoxicity of effluents originated from WWTPs with different wastewater treatment technologies. For that, effluent samples from three WWTPs with different treatment processes were seasonally collected. Physicochemical parameters were determined, the toxicity towards daphnia, protozoan, and microalgae organisms was evaluated, and data correlated. Toxicity assays showed different susceptibility of the organisms to the effluents and that toxicity is dependent on the season and wastewater treatment technology. No toxicity was observed to daphnia in winter and spring, but ~100% of mortality was observed in effluent from WWTP A in summer. Growth inhibition was observed for both protozoan and microalgae for all effluents and in all seasons with highest values in spring in WWTP C (~80%) for the protozoan while the highest microalgae growth inhibition percentage was observed for WWTP B in both spring (~80%) and summer (~80%). These results show that effluents might have negative impacts into their receiving water systems and highlight that a global assessment of effluent quality should include ecotoxicological assays to complement physicochemical and microbiological data for an operative environmental management of wastewater treatment plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-15671-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!