Rice husk nanosilica contains hydroxyl for dentin remineralization. The aim of this study was to analyze and correlate the ability of rice husk nanosilica to induce hydroxyapatite dentin. The detachment of hydroxyl from rice husk nanosilica was analyzed using the sol-gel and pyrolysis methods with Fourier transform infrared spectroscopy. Subsequently, exposing of the demineralized dentin to rice husk nanosilica was performed for a comparison. The formation of hydroxyapatite on dentin was analyzed using X-ray diffraction. The amount of hydroxyl released from the two methods was then correlated with the hydroxyapatite that formed at the dentin. The extraction of hydroxyl on rice husk nanosilica with two methods was the same. Analysis of the amount of hydroxyapatite dentin with both the methods corresponds to each other. The correlation test obtains the value of = 0.656. Rice husk nanosilica has a similar capability to release hydroxyl compound and form hydroxyapatite dentin using two methods. The creation of hydroxyapatite dentin is not only caused by the exposure of rice husk nanosilica but also owing to other factors that might reinforce the process of hydroxyapatite formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300325 | PMC |
http://dx.doi.org/10.4103/japtr.JAPTR_227_21 | DOI Listing |
Materials (Basel)
December 2024
Department of Sustainable Bioproducts, Mississippi State University, P.O. Box 9820, Starkville, MS 39762, USA.
This study explores the potential of using underutilized materials from agricultural and forestry systems, such as rice husk, wheat straw, and wood strands, in developing corrugated core sandwich panels as a structural building material. By leveraging the unique properties of these biobased materials within a corrugated geometry, the research presents a novel approach to enhancing the structural performance of such underutilized biobased materials. These biobased materials were used in different lengths to consider the manufacturing feasibility of corrugated panels and the effect of fiber length on their structural performance.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Architecture, Faculty of Science and Technology, Tokyo University of Science, Noda City 278-8510, Japan.
A fundamental study has been conducted on the effective utilization of rice husk ash (RHA) in concrete. RHA is an agricultural byproduct characterized by silicon dioxide as its main component, with a content of 90% or more and a porous structure that absorbs water during mixing, thereby reducing fluidity. The quality of RHA varies depending on the calcination environment; however, the effect is not consistent.
View Article and Find Full Text PDFMolecules
December 2024
Biochar Engineering & Technology Research Center of Liaoning Province, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China.
Appl Biochem Biotechnol
January 2025
Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India.
Cellulase was effectively immobilized onto an epoxy-bound chitosan-modified zinc metal-organic framework (epoxy/ZIF-8/CS/cellulase) support, yielding a conjugation rate of 0.64 ± 0.02 mg/cm2 and retaining 80.
View Article and Find Full Text PDFRecent Adv Food Nutr Agric
January 2025
Environmental Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.
Introduction: Saltwater intrusion poses a serious risk to global food security. As a soil amendment, biochar mitigates the negative effects of saltwater intrusion in rice, yet the beneficial effects on agricultural productivity with different exposure times and salt concentrations have not been fully examined.
Methods: A pot experiment was conducted to investigate the effects of 30% (w/w) rice husk biochar on the growth, ion accumulation, and yield of the Phitsanulok 2 rice cultivar under salt stress due to saltwater intrusion.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!