Skin and skin appendages are vulnerable to injury, requiring rapidly reliable regeneration methods. In recent years, 3D bioprinting has shown potential for wound repair and regeneration. 3D bioprinting can be customized for skin shape with cells and other materials distributed precisely, achieving rapid and reliable production of bionic skin substitutes, therefore, meeting clinical and industrial requirements. Additionally, it has excellent performance with high resolution, flexibility, reproducibility, and high throughput, showing great potential for the fabrication of tissue-engineered skin. This review introduces the common techniques of 3D bioprinting and their application in skin tissue engineering, focusing on the latest research progress in skin appendages (hair follicles and sweat glands) and vascularization, and summarizes current challenges and future development of 3D skin printing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8283073PMC
http://dx.doi.org/10.1177/20417314211028574DOI Listing

Publication Analysis

Top Keywords

skin tissue
8
tissue engineering
8
skin
8
skin appendages
8
bioprinting
4
bioprinting skin
4
engineering current
4
current status
4
status perspectives
4
perspectives skin
4

Similar Publications

: Community-acquired methicillin-resistant (CA-MRSA) greatly complicates the treatment of skin and soft tissue infections (SSTI). It was previously found that subcutaneous (SQ) treatment with the mononuclear phagocyte (MP)-selective activator complements peptide-derived immunostimulant-02 (CPDI-02; formerly EP67) and increases prophylaxis of outbred CD-1 mice against SQ infection with CA-MRSA. Here, we determined if treatment with CPDI-02 also increases curative protection.

View Article and Find Full Text PDF

Antibiofilm, Anti-Inflammatory, and Regenerative Properties of a New Stable Ozone-Gel Formulation.

Pharmaceutics

December 2024

Medical Microbiology Unit, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, Building D, 4th Floor, 06129 Perugia, Italy.

: Chronic skin wounds are characterized by inflammation, persistent infections, and tissue necrosis. The presence of bacterial biofilms prolongs the inflammatory response and delays healing. Ozone is a potent antimicrobial molecule, and many formulations have been used in the advanced therapeutic treatment of chronic wounds.

View Article and Find Full Text PDF

The combination of macroporous cryogels with synthetic peptide factors represents a promising but poorly explored strategy for the development of extracellular matrix (ECM)-mimicking scaffolds for peripheral nerve (PN) repair. In this study, IKVAV peptide was functionalized with terminal lysine residues to allow its in situ cross-linking with gelatin macromer, resulting in the formation of IKVAV-containing proteinaceous cryogels. The controllable inclusion and distribution of the peptide molecules within the scaffold was verified using a fluorescently labelled peptide counterpart.

View Article and Find Full Text PDF

Nanocrystals in Dermal Drug Delivery: A Breakthrough for Enhanced Skin Penetration and Targeted Skin Disorder Treatments.

Pharmaceutics

December 2024

Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.

One of the major challenges in dermal drug delivery is the adequate penetration of the active compound into the skin without causing any skin irritation and inflammation. Nanocrystals (NCs) are nanoscale particles, and their sizes are below 1000 nm. NCs are made up of drug particles only, which are used to improve the aqueous solubility and bioavailability of poorly water-soluble drugs.

View Article and Find Full Text PDF

Skin wound healing is a physiological process orchestrated by epithelial and mesenchymal cells able to restore tissue continuity by re-organizing themselves and the ECM. This research study aimed to develop an optimized in vitro experimental model of full-thickness skin, to address molecular and morphological modifications occurring in the re-epithelization and wound healing process. Wound healing starting events were investigated within an experimental window of 8 days at the molecular level by gene expression and immunofluorescence of key epidermal and dermal biomarkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!