Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Genetic analysis of an adult patient with an unusual course of ketosis-prone diabetes (KPD) and lacking islet autoantibodies demonstrated a nucleotide variant in the 5'-untranslated region (UTR) of , a β-cell development gene. When differentiated to the pancreatic lineage, his induced pluripotent stem cells stalled at the definitive endoderm (DE) stage. Metabolomics analysis of the cells revealed that this was associated with leucine hypersensitivity during transition from the DE to the pancreatic progenitor (PP) stage, and RNA sequencing showed that defects in leucine-sensitive mTOR pathways contribute to the differentiation deficiency. CRISPR/Cas9 manipulation of the variant demonstrated that it is necessary and sufficient to confer leucine sensitivity and the differentiation block, likely due to disruption of binding of the transcriptional regulator NFY to the 5'-UTR, leading to decreased PDX1 expression at the early PP stage. Thus, the combination of an underlying defect in leucine catabolism characteristic of KPD with a functionally relevant heterozygous variant in a critical β-cell gene that confers increased leucine sensitivity and inhibits endocrine cell differentiation resulted in the phenotype of late-onset β-cell failure in this patient. We define the molecular pathogenesis of a diabetes syndrome and demonstrate the power of multiomics analysis of patient-specific stem cells for clinical discovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576504 | PMC |
http://dx.doi.org/10.2337/db20-1293 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!