Non-judicious oxygen use in preterm infants is associated with increased risk of retinopathy of prematurity, bronchopulmonary dysplasia and longer hospital stay. Despite established guidelines on oxygen therapy, compliance with the best oxygen practices remains suboptimal. Excessive use of oxygen also consumes a large proportion of the annual maintenance budget of special newborn care units (SNCUs) in the districts. In this project, we aimed to reduce the oxygen consumption in the SNCU at Sehore, Madhya Pradesh, India from eight to four cylinders per day, by rationalising the indications, monitoring and method of oxygen delivery.We tested two sets of interventions using the Plan-Do-Study-Act (PDSA) approach. The first intervention was the introduction of a written 'oxygen policy' regarding indications of starting/stopping oxygen and the use of saturation targets. The second was using short binasal infant prongs (at 0.5-1 L/min), instead of oxygen hoods as the primary method of oxygen delivery in spontaneously breathing neonates requiring oxygen. In the first PDSA cycle, we assessed the feasibility of the intervention in a small set (n=30) of neonates and later scaled up to all eligible neonates in the second phase.We observed a significant reduction in oxygen consumption (from median (IQR) 8 (7-8) to 3 (3-4) cylinders per day) that can lead to a direct saving of 590 000 Indian rupees (US$9000) per year. There was a significant reduction in the number of neonates on oxygen support on a given day. We did not observe any increase in mortality or nasal injury. The change was sustained for the next 8 months.We conclude that by having a contextual oxygen policy and using nasal prongs instead of oxygen hoods as the preferred delivery method, we can achieve a sustainable reduction in oxygen consumption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336200PMC
http://dx.doi.org/10.1136/bmjoq-2021-001386DOI Listing

Publication Analysis

Top Keywords

oxygen
15
oxygen consumption
12
special newborn
8
newborn care
8
madhya pradesh
8
pradesh india
8
cylinders day
8
method oxygen
8
oxygen hoods
8
reduction oxygen
8

Similar Publications

TRAIL agonists rescue mice from radiation-induced lung, skin or esophageal injury.

J Clin Invest

January 2025

Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, United States of America.

Radiotherapy can be limited by pneumonitis which is impacted by innate immunity, including pathways regulated by TRAIL death receptor DR5. We investigated whether DR5 agonists could rescue mice from toxic effects of radiation and found two different agonists, parenteral PEGylated trimeric-TRAIL (TLY012) and oral TRAIL-Inducing Compound (TIC10/ONC201) could reduce pneumonitis, alveolar-wall thickness, and oxygen desaturation. Lung protection extended to late effects of radiation including less fibrosis at 22-weeks in TLY012-rescued survivors versus un-rescued surviving irradiated-mice.

View Article and Find Full Text PDF

Modern-day applications demand onboard electricity generation that can be achieved using piezoelectric phenomena. Reducing the dimensionality of materials is a pathway to enhancing the piezoelectric properties. Transition-metal dichalcogenides have been shown to exhibit high piezoelectricity.

View Article and Find Full Text PDF

Background: Increasing life expectancy has led to a rise in nursing home admissions, a context in which older adults often experience chronic physical and mental health conditions, chronic pain, and reduced well-being. Nonpharmacological approaches are especially important for managing older adults' chronic pain, mental health conditions (such as anxiety and depression), and overall well-being, including sensory stimulation (SS) and therapist support (TS). However, the combined effects of SS and TS have not been investigated.

View Article and Find Full Text PDF

Unusual Iron-Independent Ferroptosis-like Cell Death Induced by Photoactivation of a Typical Iridium Complex for Hypoxia Photodynamic Therapy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China.

Ferroptosis is a unique cell death mode that relies on iron and lipid peroxidation (LPO) and is extensively utilized to treat drug-resistant tumor. However, like the other antitumor model, requirement of oxygen limited its application in treating the malignant tumors in anaerobic environments, just as photodynamic therapy, a very promising anticancer therapy. Here, we show that an iridium(III) complex (Ir-dF), which was often used in proton-coupled electron transport (PCET) process, can induce efficient cell death upon photo irradiation, which can be effectively protected by the typical ferroptosis inhibitor Fer-1 but not by the classic iron chelating agents and ROS scavengers.

View Article and Find Full Text PDF

Cancer survivors have an increased risk of developing Type 2 diabetes compared to the general population. Patients treated with cisplatin, a common chemotherapeutic agent, are more likely to develop metabolic syndrome and Type 2 diabetes than age- and sex-matched controls. Surprisingly, the impact of cisplatin on pancreatic islets has not been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!