Diet-derived transmission of MicroRNAs from host plant into honey bee Midgut.

BMC Genomics

Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects/Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.

Published: August 2021

Background: MicroRNA (miRNA) is a class of small noncoding RNAs, which targets on thousands of mRNA and thus plays important roles in many biological processes. It has been reported that miRNA has cross-species regulation functions between parasitoid-host, or plant-animal, etc. For example, several plant miRNAs enter into the honey bees and regulate gene expression. However, whether cross-species regulation function of miRNAs is a universal mechanism remains a debate question.

Results: We have evaluated transmission of miRNAs from sunflower and sedr plants into the midgut of honey bee using RNA-Seq analyses complemented with confirmation by RT-qPCR. The results showed that at least 11 plant miRNAs were found in the midgut of honey bee feeding by sunflower and sedr pollen. Among which, nine miRNAs, including miR-30d, miR-143, miR-148a, miR-21, let-7 g, miR-26a, miR-126, miR-27a, and miR-203, were shared between the sunflower- and sedr-fed honey bees, suggesting they might have essential roles in plant-insect interactions. Moreover, existence of these co-shared miRNAs presents a strong evidence to support the successful transmission of miRNAs into the midgut of the insect. In total, 121 honeybee mRNAs were predicted to be the target of these 11 plant-derived miRNAs. Interestingly, a sedr-derived miRNA, miR-206, targets on 53 honeybee genes. Kyoto Encyclopedia of Genes and Genome (KEGG) analyses showed that these target genes are significantly involved in hippo signaling pathway-fly, Wnt signaling pathway, and N-Glycan biosynthesis.

Conclusions: In summary, these results provide evidence of cross-species regulation function of miRNA between honeybee and flowering host plants, extending our understanding of the molecular interactions between plants and animals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336336PMC
http://dx.doi.org/10.1186/s12864-021-07916-4DOI Listing

Publication Analysis

Top Keywords

honey bee
12
cross-species regulation
12
mirnas
8
plant mirnas
8
honey bees
8
regulation function
8
transmission mirnas
8
sunflower sedr
8
midgut honey
8
mirnas midgut
8

Similar Publications

Bee pollen peptides as potent tyrosinase inhibitors with anti-melanogenesis effects in murine b16f10 melanoma cells and zebrafish embryos.

Sci Rep

December 2024

Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.

One important functional food ingredient today, valued for its health properties and ability to prevent disease, is bee pollen, which comprises a combination of nectar, pollen from plants, and the secretions of bees. In this research, the tyrosinase (TYR) inhibiting abilities of the peptides derived from bee pollen protein hydrolysates are investigated. Various proteases were utilized to generate these peptides, followed by testing at different concentrations.

View Article and Find Full Text PDF

Assessing the distribution and human health risks of cationic surface-active agents in honey from China.

J Hazard Mater

December 2024

State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China. Electronic address:

Cationic surface-active agents (CSAAs) can persist in ambient water, be ingested by bees, and contaminate honey. Residues of CSAAs in honey remains unknown. This study measured the residual levels of five CSAAs in 271 honey samples from China using ultrahigh-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry.

View Article and Find Full Text PDF

Little is known about the potential impact of point source contamination from seed treatment pesticide residues and degradation products in waste products in treated seed. The presence of these pesticides and their degradation products in the environment has been associated with toxic effects on non-target organisms including bees, aquatic organisms and humans. In this study, we investigated the occurrence of twenty-two pesticide residues and their degradation products in two streams receiving runoff from land-applied wet cake, applied and spilled wastewater originating at a biofuels production facility using pesticide-treated seed as a feedstock.

View Article and Find Full Text PDF

Due to the increase in data rate in mobile communication and the widespread use of mobile internet, electromagnetic communication systems are increasing daily. This situation causes increases in the use of more mobile communication devices and environmental non-ionizing Electromagnetic Field (EMF) levels. The rise of bee deaths and colony losses in beekeeping parallel to the increase of the EMF sources cause the concept of "electromagnetic pollution" to be considered among the reasons.

View Article and Find Full Text PDF

Current status of toxicological research on stingless bees (Apidae, Meliponini): Important pollinators neglected by pesticides' regulations.

Sci Total Environ

December 2024

Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, Montevideo, Uruguay; Centro de Investigación en Ciencias Ambientales (CICA), Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, Montevideo, Uruguay. Electronic address:

Stingless bees (tribe Meliponini), comprising over 600 known species within the largest group of eusocial bees, play a critical role in ecosystem functioning through their pollination services. They contribute to the reproduction of numerous plant species, including many economically important crops such as cacao, coffee, and various fruits. Beyond their ecological significance, stingless bees hold cultural and economic importance for many native and rural communities, where they are managed for their honey, pollen, and propolis for nutritional and health purposes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!