A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metal-organic frameworks with different oxidation states of metal nodes and aminoterephthalic acid ligand for degradation of Rhodamine B under solar light. | LitMetric

Metal-organic frameworks (MOFs) have been investigated recently as effective visible light photocatalysts. In this report, we synthesized nickel, iron, and titanium-based MOFs with different oxidation states of metal ions and aminoterephthalic acid ligand for photocatalytic degradation of Rhodamine B (RhB) dye under solar light irradiation. The photoluminescence analysis revealed that the Fe-MOF could suppress the recombination of photoinduced charges and effectively degrade the dye. The photocatalytic experiment demonstrated that the Fe-MOF exhibited higher degradation efficiency of dye (90 %) compared to the Ni-MOF (9 %) and Ti-MOF (50 %) at pH 7 in 90 min. In addition, the effects of catalyst amount, dye concentration, and solution pH on dye degradation were investigated. The photodegradation of dye using Fe-MOF was well-fitted to the first-order kinetics with an R value of 0.9987. Furthermore, reactive oxygen species test and electron paramagnetic resonance study revealed that the superoxide anion radicals were mainly responsible for the dye degradation. Cyclic test analysis indicates that there was no substantial decrease in the degradation efficiency of dye after four consecutive cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.131726DOI Listing

Publication Analysis

Top Keywords

metal-organic frameworks
8
oxidation states
8
states metal
8
aminoterephthalic acid
8
acid ligand
8
degradation rhodamine
8
solar light
8
dye
8
degradation efficiency
8
efficiency dye
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!